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o

1 Introduction

Unmanned exploration places peculiar demands on the systems we send to other planets
and the remote reaches of space. They must be extremely reliable in the face of an often
poorly understood environment. They must operate for long stretches without intervention.
And they must be self-sufficient in their dealings with failures and other calamities. The
extent of our exploration is limited by the level of autonomy that we can endow. This in
turn depends on the sophistication and adaptability of the software that serves as our proxy,
managing these systems and carrying out the desired tasks.

In the future we would like to move into closer contact with the objects of space
exploration, exploring surfaces, atmospheres, and other realms, fielding more complex
instruments, and moving farther into distant space. More ambitious missions push greater
demands upon this software.

Managing the resulting complexity has forced us to abandon our well worn but limiting
approach to software design for these systems. It has also become imperative to reduce the
cost and time spent on their development. Both considerations have resulted in the creation
of a task to generate a new software architecture for future missions. This task has been
initiated by the X2000 program and is the subject of this document.

o

2 Document Objectives

This document was conceived to describe the top level goals and technical approach for a
Unified Flight/Ground Architecture (UFGA) for software [See “Software Architecture” in
Appendix A — Definitions]. It is not a specification from which a particular design might
be produced, but rather is meant to expose issues that potential designs must address, to
promote general principles and features deemed important by its contributors, and to
suggest a general framework that may accomplish these objectives.

The intended scope of this effort is broad, including both engineering and instrument flight
software, ground software for spacecraft operation and monitoring, and test software for
all levels of integration. The unifying theme among these areas is that they all play an
operative role in the activities of a spacecraft or other remote vehicle at some time during its
life span.

This document is divided into sections which address major aspects of design, beginning
with general design guidelines. This is followed by a discussion of general software
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methods that apply at all levels. Then the issues associated with each of several particular
functional areas is addressed.

This is a draft version of the document. Comments, criticisms (graciously offered), and
contributions to its content are welcome.

o

3 Design Guidelines

The following objectives do not in themselves directly dictate any software architecture.
They state high level attributes which would be achieved ideally (in the view of the
contributors) by any design meeting the programmatic and technical challenges facing
future space exploration.

3.1 Support a Wide and Increasingly Challenging Range of
Missions

Many missions in the near future will still involve flying by bodies, or rendezvousing with
them and orbiting around them. Eventually, landers and surface rovers will become more
common, and other sorts of mobile platforms, such as balloons or even submarines, may
be necessary. Sample return vehicles may be required to bring the rewards home. These
systems may work in partnership with orbiters or others of their kind. In interplanetary
space, large aperture experiments involving closely coordinated groups of spacecraft will
be flying.

These missions vary in the degree of ground visibility and control that is possible, the
complexity and immediacy of the required tasks, the uncertainty of the environment with
which they must contend, the reliability they must achieve, and the limitations of their
physical resources. They will also vary in the level of technology available at their
inauguration, the extent to which inherited elements impose constraints on the design, and
the cost and schedule available for implementation. These features all bear directly and
substantially on the software capabilities required to support them. A painful consequence
has been the wasteful proliferation of systems and approaches populating past programs.

One measure of success of the UFGA will be the range of missions it is able to support,
especially if its utilization arises, not as an imposition, but rather as a result of free selection
by implementers for its attractive features. The architecture must therefore have attributes
conducive to wide applicability. These include the following.

3. 1. 1 Flexible and Adaptable Software Components

The architecture must permit a variety of implementations so it may be tailored cleanly to
particular applications.

At the software component level this means that the following adjustments should be
relatively easy:
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• The capabilities of each component can be adjusted to meet related but different
needs.

• Alternate implementations can be substituted within each area of functionality.
• Nonessential functions can be removed.
• New components, not previously anticipated, can be added.

One essential factor is choosing the granularity of the functional division such that
separable functions are not intermingled in the same component. Another is avoiding
duplication among components such that consistency is difficult to maintain, while
avoiding a design that unnecessarily couples component implementations.

3. 1. 2 Adjustable Hardware and Software Infrastructure

In addition, elements of the architecture infrastructure must also be adjustable. It should
move easily across a variety of computing platforms where any of the following might
change (within certain prescribed but not overly tight constraints):

• Processor speed, type, and quantity
• Memory and mass storage architecture
• Networking, signaling, and general I/O architecture
• Core operating system
• Operating system support structures

3. 1. 3 Capability in Layered Increments

The UFGA must be able to support elaborate missions in uncertain environments at one
extreme while also capturing relatively simple applications with the least of requirements.
This is a broad spectrum for which no single paradigm applies. As complexity is added, the
necessary structure required to organize and manage problems can shift dramatically in
character. We see this in real world examples, such as biological and economic systems,
where nested layers of control have evolved, each manifesting itself in different ways, from
chemical processes at one end to governmental regulation at the other. Nevertheless, all of
these layers interact in a structured manner that productively unifies the entire collection.

Rather than identifying a suite of architectures with each most suitable to a restricted range
of application, we prefer to learn from natural examples by proposing a unified architecture
that spans the entire range, to be accomplished by partitioning functionality in a layered
manner and applying the appropriate paradigm to each. [“This statement, at this point in the
document, needs more justification to be compelling. A hierarchical or layered organization
is not necessarily better than an organization of interacting agents, but it may be a more
comfortable model. Actually, as I read in later sections, I think you have a very good
rationale for layered organization, and maybe it just needs to be summarized here.” —
Dvorak] This must reflect communication and control issues for a broad range of remote
mission complexity and it must facilitate functional migration. Consequently, the
architecture should be completely viable with just the lowest layer (or two, or three, …)
residing on the fielded system (and its subordinates, if any).
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In this manner the architecture captures even the simplest remote systems, which may then
be viewed merely as harboring the lowest level components of a full UFGA architecture,
the bulk of which happens to reside elsewhere.

At the opposite extreme, a fully autonomous remote system which receives only very high
level instruction from the ground can also have essentially the same full UFGA
architecture, except that in this case the bulk of it resides on board. Nevertheless, the
lowest components in this interconnected system should share the same basic role as their
counterparts in simple systems.

Intermediate cases can also be envisioned. For instance, partial autonomy results where all
but the highest levels of the system fly. In another example, one or more low level remote
systems (e.g., some aerobots) may be guided from a central remote site (e.g., an orbiter)
with more autonomous capability. The strength of the architecture will be in its ability to
divide and realign as necessary to meet these various needs.

3.2 Unifying Paradigms

A few useful principles can guide an effective layered architecture.

3. 2. 1 Goal Directed Behavior

In a layered architecture each layer in performing its functions depends in large measure on
discounting the fine details of lower layers, including the uncertainty and incomplete
knowledge confronting them. To make this possible, each component in the lower layers
must perform actions which make its behavior predictable in some bounding sense, despite
the difficulties. It must continually correct its behavior in response to perceived events,
presenting a somewhat idealized behavior to layers above which are not privy to the
numerous actions required to mask the uncertainties. The resulting actions are therefore not
directly dictated by the higher layer, but rather fall as a consequence of a more abstract goal
established by the higher layer in conjunction with the conditions encountered.

This reflexive application of local feedback is necessary at each layer until at the highest
layer operators of the system become the goal providers. Any compromise to this goal
directed commanding at each layer by directly intervening in lower layers with explicitly
commanded actions can only create havoc with the overall architecture.

3. 2. 2 Weak Coupling

Peer level interactions with other components are among the uncertainties with which each
component must cope. As peers there is less opportunity to react fruitfully to the behavior
of other components for which no direct control may be possible. Attempts to do so may
become chaotic, or unstable, and deadlocks can arise where little progress is made. The
role of higher layers is to put some form on these interactions, but this becomes
unmanageable if the interactions are numerous or complex. Therefore, coupling among
components must be minimized by making components tolerant to defects in their peers and
by requiring components to contain the effects of local problems if possible.
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3.3 Facilitate Integration and Test

Systems to be captured by the UFGA are complex. They consist of numerous components
spanning flight, operations, and test systems. It is important that these systems not be
designed in a manner that requires large portions of the system to be present for meaningful
integration and test to occur. It is also important that the verification of the system be
largely possible through the independent assessment of subsets at each level of integration
without having to repeat these verifications for the system at large. Otherwise, enormous
analytical effort is required throughout the development to assure the success of a late,
intense, and usually unsatisfying integration.

3. 3. 1 Parallel Development and Test of Components

Facilitating integration and test requires a reasonably decoupled design with software
components that are self-contained to the extent possible. Once this has been accomplished,
however, the actions of a component must be carefully delineated such that there is never
any ambiguity in the state of the component, and such that each action on the component
moves it unambiguously from one state to another. To achieve this, a discipline must be
imposed on the implementation of each component, ideally through the tools used to create
it. This will enable a rigorous definition of the actions of each component that can then be
tested and verified at the component level.

3. 3. 2 Layered Operation

Once avoidable dependencies have been eliminated, it may still not be easy to test a
component in isolation, especially when a complex sequence of interactions are involved
that are difficult to generate analytically. To create a realistic test, each component generally
requires some representation of the interfaces above that control it, and often requires a
fairly accurate dynamical representation of its peers and of all the components below it that
it controls. Various strategies for dealing with this problem can be enhanced if the
architecture supports them.

Interface Visibility

It should be possible to intercept data at all interfaces for examination. This should include
enough information to expose relationships between traffic on different interfaces and
activities in any encompassing environment.

Incremental Assembly

It should be possible to assemble the architecture from the lowest layers up, missing upper
layers being replaced by test drivers enabling explicit exercise of the layers present. This
has a number of benefits:

• It aids testing by limiting the scope in the beginning to a manageable level, and
allowing each subsequent layer to build on a solid, verified foundation.

• It enhances the level of control available for testing components in each layer rather,
than having to rely on indirect means.

• It gets integration started earlier when problems are easier to correct.
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• It provides more programmatic flexibility for deliveries.
• It encourages the layering approach desired for reasons of adaptability, as described

above.

Variable Fidelity Execution

It should also be possible to assemble the architecture from the highest layers down,
missing lower layers being replaced by reduced fidelity models of behavior. This has a
number of benefits as well:

• It permits a far larger number of scenarios to be run on high level functions for
which the details of operation at low levels are generally not (and should not be)
important.

• It provides a basis for comparison against which the behavior of lower level
functions can be verified.

• It enables the architecture to play a feasible role in higher level simulations of
mission activities.

• It complements and directly benefits from the model based design methods
described below.

Substitution Testing

It should be possible to assemble the architecture on the “flight” hardware, on a simulation
of the “flight” hardware, or on a relatively arbitrary mixture of the two. For missing
hardware elements, the level of replacement should be selectable, taking place directly at the
hardware interface or higher into the software hierarchy, as appropriate. The benefits of
this are as follows:

• Hardware interfaces can be tried early, before “flight” hardware is available.
• If problems arise, the interface can be broken higher, above the site of the problem

to enable continued testing while the problems are resolved.
• Testing is not as vulnerable to shuffling hardware configurations, especially if

hardware must be pulled for repair or rework.

3. 3. 3 Integral Test Software Architecture

It is apparent that during test the boundary between flight and test software will become
quite indistinct in many configurations. This is entirely appropriate, since the lines between
reality and simulation fall upon the same boundaries as the layering of the overall
architecture described earlier. Over the course of testing, as more of the system is put in
place, this line gradually moves outward to the hardware, and then beyond to the physical
interface between the hardware and its environment, later to be displaced entirely by the
reality at launch. Until this last step there is a component of the support environment that is
retained through each stage. Continuity should be retained throughout for those
components spanning test stages with no need to change simulation models, support
equipment, or other elements of the support system.
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Likewise, the test support system must be an integral part of the entire software
development process, not just a parallel effort that meets the flight software at some later
stage in the development. The same incremental approach must be followed to make test
capability available from the start, as needed by the flight development.

3. 3. 4 Inclusion of Operations in the Test Support System

To be a truly unified architecture for flight and ground, the test environment must transition
seamlessly into flight with operations providing equivalent support to both arenas. This
makes the operations software an effective subset of the test support system, so it must
effectively support the system throughout development. In essence, operation software
should become what is left of the support environment at launch. Given the layered
architecture whereby portions of the operations capability may be shifted to flight (or
conversely), it becomes doubly clear that the basis for distinguishing among flight, test,
and operation software is vanishing with these areas comprising nothing more than a
partitioning of components to different physical locations in an otherwise homogeneous
software architecture. The recognition of this must become both technical and
programmatic in order for a unified architecture to succeed.

3.4 Accommodate a Dynamic Development Environment

There is always a danger with any effort like the UFGA that it will become rapidly
obsolete, serving more as a detriment to progress than a help. An ability to easily adapt and
grow from mission to mission has been described. A similar flexibility is required,
however, even within the scope of a single mission. As a system progresses from concept
to implementation to flight many adjustments in the software approach will have to be
made. Software is often left scurrying at the last minute to make the final accommodations.

To avoid this, the architecture must be nimble and lean. It must not be a overbearing,
feature laden behemoth that moves only with arduous coaxing. Following are some of the
situations that must be easily supported.

3. 4. 1 Late Scope Adjustments

Experience tells us that the scope of a software development effort can be quite dynamic.

Reductions

When well laid plans go awry, it may be necessary to exert a lower level of control than
originally intended. This may happen during development if obstacles are encountered, or it
may happen in flight if difficult problems force close intervention.

Should such a situation arise, the steps necessary to shift the level of control earthward
should be safe and simple, essentially through a process of lifting upper layers of the
architecture. This should expose no interface not thoroughly exercised during the
incremental integration and test process. This implies that flight/ground communication can
be inserted between any two layers.
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Enhancements

Planning will occasionally not permit the development of full capability at an early stage.
This could be a consequence of problems, or it could be a deliberate step to shift
development efforts off the critical path into a quiet period of interplanetary cruise. On very
long flights there may even be a notion that waiting is better for the program by allowing
technology to progress further before development choices are made.

The steps necessary to enhance capability may include replacement of software
components, or the shifting of control back to the flight system. Both should be supported
in a graceful manner with any added capability exploiting existing flight interfaces to the
extant capability.

3. 4. 2 Design Changes

Software changes frequently due to changes in hardware design or to refinements in our
understanding of its operation and failure modes. This is harder to accommodate if there is
no explicit representation of the hardware in the software design. If only the analytic
byproducts of our hardware models reside in software, then every hardware design change
forces us to revisit each conclusion, procedure, and test — a process that can never be
thorough.

Model Based Design

Part of the solution to this problem is converging on the correct knowledge of hardware
behavior sooner and more precisely than we have in past programs. Model based design is
a key tool in addressing this motive and is rapidly gaining momentum as the design
paradigm of future programs.

Model based design will allow hardware designers to address issues and find problems at
an early stage by giving them an executable specification of the design that can be engaged
with other models. Integration starts much sooner, giving software development the lead it
needs and giving it an opportunity to remain current. The models also provide a less
ambiguous truth test against which the behavior of actual hardware can be gauged.
Moreover, it will be more difficult foist hardware idiosyncrasies upon the software as not
strictly forbidden behavior, whereas any departure from a model will be viewed as
exceptional.

Model Based Implementation

The same modeling effort used for design can have an immediate impact on the software
design if the software is prepared to take models as direct input. One level of realization this
might consist of automatic code generators working from a model of the desired component
functionality. Mature tools of this sort are presently available.

In a more idealized conception, the flight software would be comprised of generic
“engines” and models of the hardware and environment. All other behavior would be
derived by inference, given the goals of the system. In reality, this cannot presently be fully
achieved in a practical way, but with specialized representations of the models, supported
by additional heuristics and guidance from designers, substantial strides have been made in
this direction.
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Advancement in model based design and model based software implementation are
harmonious objectives which should be supported by the UFGA. More will be said later on
this subject in the context of software reuse.

3.5 Define a Clear Evolutionary Path for Advancement

Each new program is tempted to start anew with every software development rather than
building upon past efforts in a process of continuous refinement. Two of the obstacles that
have stood in the way of this more rational approach are fundamental incompatibilities
between present flight and ground architectures, and a uniform method of partitioning and
design that makes functionality available in an easily reusable form. This has made it very
challenging to evaluate the success and merits of a software design. A principled basis of
software design evaluation is essential to analyze where specific improvements are
necessary, and to find where opportunities for alternative solutions exist. The architecture
principles required to gain these properties are described below.

3. 5. 1 Migration of Capability Between Ground and Flight

The trade between flight and ground implementation involves competing issues. There will
always be more computing capability in ground systems than flight systems, and human
interaction, when required, is most readily done with ground systems where
communication constraints are minimal. On the other hand, there will always be more data
available in the flight system. The data will be immediate, not delayed for hours or days,
and reactions can be effected much more quickly. Data can also be processed on board to
more effectively use the available link. Therefore, as more computing capacity becomes
available in flight systems and the quality and reliability of flight autonomy improves, the
balance shifts increasingly in favor of flight systems. In the extreme, all automation is on
board and ground interaction is reduced to providing the subjective contribution that is
irrevocably in the human domain.

This ultimate aim is far into the future, so in the meantime it is necessary to find a good
partnership between flight and ground that fits the present state of development where
substantial capability remains on the ground. Accordingly, it is likely that many of
necessary flight elements eventually required will first take form in ground systems. This
doesn’t mean in all cases that proven ground capability can move intact to flight systems.
Their unrivaled opportunity for immediate response will always give flight implementations
a fundamentally different character from their ground counterparts. In fact, any capability,
for which movement to flight exacts no significant alteration, could as well remain
earthbound. Migration, therefore, is not simply about the movement of software.

What then does migration of capability from ground to flight mean? There are different
answers, depending on the issue addressed by migration.

Assimilation

In the simplest examples, the desire is merely to break the tyranny of the link, which is
expensive and time consuming. In cases where data is sent to the ground for automated
processing, and results possibly returned to the flight system, but on a relatively leisurely
schedule, the value of migration to flight is purely to save link costs. In this case, ground
capability can migrate essentially unaltered, except as the need to fit more tightly
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constrained computing resources dictates changes. An advantage may accrue from
eliminating round trip light time in the reply, but the nature of the results is not materially
altered in migration of this fashion, and it may well be that the saved time is used for
nothing more than reducing the overhead of the task itself.

This sort of increase in autonomy, while not trivial, is not burdensome to implement, once
the infrastructure for migration is in place. The enabling feature is an architecture that
overtly recognizes the kinship of remote processes with local processes, in a sense making
migration little more than the alteration of link characteristics between communicating
software components. The accomplishment of this migration is not therefore so much a
success for the capability moved to flight implementation as it is for the capacity of the
flight system to assimilate it. Migration, first and foremost, is an architectural strength.

Augmentation

More complicated examples of migration deal not so much with transporting capability as
they do with transforming capability. The function leaving the ground is reconstituted in a
fundamentally different and more vigorous form on board purely because of the richness of
data available that no ground rendition could command. Such functions are typically more
intrusive and all-encompassing because they influence, not just how things get done, but
what things are possible.

For an architecture to accommodate this sort of autonomy, the extant elements must do
more than simply acknowledge their new partners. They may further be called upon to play
new roles never required when greater control rested with the ground. For example,
augmentations could be necessary in predictive or diagnostic abilities. Adapting to such
immigrant capability, therefore, means also supplementing the capability already in place.
The ease with which this can be done without undermining the inherited design is the
second essential strength an architecture must possess to support migration.

Neither of these approaches to migration can happen by accident. The first has direct
implications on the way architectural components interact and the independence of internal
function from the external characteristics of interaction. The second suggests an approach
to modularity wherein each component may be further partitioned into separable modules,
residing in different locations.

3. 5. 2 Reusable Components

Having the design in hand for one mission, it is likely that the next involves most of the
same functions, often with comparable hardware for much of the system. The next after
that will similarly resemble its predecessor, and so on. One could conceivably find the
subset of each design that continues into the next and rebuild the new design upon this
foundation. After a few missions a thread that all share may be found winding through the
collection, and there would be a natural inclination to broaden this thread to the extent
possible so that each mission could minimize its development costs. This approach has, in
fact, been in general favor for decades, describing much of the present infrastructure for
flight projects.

The unfortunate side effects of this approach are that it either finds only the least common
subset among all programs, or it severely constrains their implementation and retards
progress. This can be partially mitigated by building software in a manner that is more
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readily tailored for each application, such as so-called “data driven” implementations, or
those that reuse a common kernel. Nevertheless, the collective strand remains a restrictive
concept, addressing only broadly cutting functionality, joining a diverse spectrum of
disciplines under one colorless cloud.

Self-contained Modules

Far less entangling is an approach that addresses the interoperability of diverse
components. The essence of this approach is to encapsulate all aspects of a particular object
within self-contained modules sharing common interaction standards, rather than drawing
related functions from several groups into some monolithic program. In this way the
identity of an object is not subsumed inside some self-perpetuating amorphous structure
that has no allegiance to any particular system or component.

Such modules can move more freely and intact from one program to another, or can be set
aside when not needed without threatening the integrity of other modules. There is no need
to span most programs — only enough to make potential reuse attractive. Therefore, the
overall portion of functionality captured in reusable form is potentially much higher. At the
same time, each module survives only as long as it continues to serve a vital purpose, and
this capability can be abandoned in relatively small decrements. The agility of this process
assures that continual progress is not hampered.

In additional to modularity, the concept of a reusable component implies that part of the
component remains fixed as the component is reused. However, it need not be all of the
component. The nature of the reuse depends on what parts are held fixed. This can include
each of the following cases:

Interface reuse
Interface reuse occurs when the interface with which the component interacts with
other components remains fixed while the internals of the component may vary.
Interface reuse is commonplace in software libraries and protocols (e.g., math
library functions implemented in hardware or software floating point arithmetic).
While the implementation may vary, there is nevertheless an implied constancy in
the function actually provided. That is, one’s expectation of the results of using the
component may be considered part of the interface which remains unchanged.

Algorithm reuse
Algorithm reuse occurs when the functionality of the component is reused in a
variety of contexts, where each context requires a specific interface. With a complex
data processing algorithm, for instance, there may be substantial benefit to reuse in
a new system, even if substantial interfaces changes are required.

Component reuse
With component reuse both the interfaces and algorithms of the component are
reused without modification. Legacy software falls into this category where the
software does not adapt to its environment but the environment adapts to work with
the legacy software. One gains the greatest benefit from this type of reuse if the
architecture defines standards capable of minimizing the level of adaptation
required.
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Note that the scope of component reuse can occur both within one software design, across
multiple software designs, or both.

Adaptable Modules

There is still plenty of room to create adaptable modules that are not bound to a particular
system element. A variety of methods can be applied, including those used in more cross-
cutting approaches, but also model-based implementations as described above. This has the
effect noted earlier of broadening the applicability of a module, but in a much more focused
manner that permits deeper representations, thus improving the chances that a module can
be applied to a given application.

3. 5. 3 Promoting Design for Reusability

Reusable software components require an architecture to promote reuse based on
modularity and interfaces, but equally essential is a development process that makes
software design for reuse a natural thing to do. Software development involves a series of
steps from software requirements, through specification, design, implementation, and test.
Various development strategies (e.g., waterfall, incremental, or spiral models) differ on the
basis of granularity, scope, and revisions. These distinctions are orthogonal to the
techniques for designing, implementing, and testing the software. Therefore, the
architecture alone does not provide all the ingredients necessary to realize reusability.

Custom software development ranks low in that regard since reusability is not a primary
concern of the software designer. Object-oriented development methodologies provide a
plenitude of solutions, but also introduce the risk of compromising reusability due to
methodologies and tools that others may not be able to reuse.

Model based software development offers an intermediate paradigm where reuse can occur
not only at the level of the software product (i.e., algorithms, structure, and interfaces), but
at the level of the software development process as well. Its contribution is to capture
purpose and functionality into a model and to use this model for producing (in part or
whole) the design, implementation, and testing of the software. Models explicitly
representing the purpose of software components in terms of the responsibilities bestowed
on them, and they describe how components are designed to achieve their intended
purpose. Model based software tools then translate this purpose and design into operational
products such as source code, documentation, command lists, telemetry catalogs, and
interface headers. This has important consequences on the processes of software
development and reuse.

In this manner, software reuse can occur in form independent combinations of:

• Using existing models or writing new ones
• Using existing model-based tools or writing new ones
• Targeting models and tools for the same software architecture or a new one

[See “Model Based Software Design” in Appendix B — Examples.]
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Standard Interfaces, Structure, Etc.

A completely formless approach to modularity is inappropriate. Some issues are enduring,
regardless of the vehicle, mission, or epoch. Basic notions of time, resources, reliability,
priorities, and so on pervade most functions and should be addressed directly in the
UFGA. Interoperability across a variety of interface characteristics, functional migration,
incremental capability for assembly and variable fidelity execution, and so on also dictate a
set of universal standards of implementation that must be established. This section has
suggested many such attributes that can guide the architecture. The aim of the UFGA
should be to put into effect these principles in a thorough, well-structured manner that
solves recurring universal problems, while maintaining the flexibility of functionality
necessary to gain wide acceptance.

o

4 An Approach to Layered Design

To meet the guideline of a layered architecture where increasing capability is incrementally
available, and operational at successive stages, it is necessary to establish an approach to
system hierarchy that identifies capability at each level. One such approach is described
here.

In this discussion two types of layering are intended. At a coarse level there exists across
the whole architecture the notion of named layers such that each layer has a well-defined
interface, each interface supports a well-defined protocol, and each software component
exists within a particular layer. This supports the goals stated above regarding
incrementally available capability and layered operation. Without well defined layers these
goals are more easily slighted. Remote interfaces will also impose clear delineations of
function that are best matched to comparable divisions within the architecture hierarchy.

Within each of these layers functionality may be further “layered” in the sense that some
components control others, but at this level of granularity, there is no need to further
subdivide into strict layers. In this context, “layering” refers simply to the hierarchical
organization of components.

4.1 Flight

This layered approach will be described beginning with the most basic flight systems; then
showing how each layer builds upon those before without corrupting the preceding layers.
At the most autonomous extreme, most functions reside in the flight system (or systems)
with little but operator interfaces left on the ground. To present the most unified picture,
layering will be discussed first in this context. However, it should be noted that the intent is
to make the dividing line between flight and ground possible at each stage, retaining one or
more upper layers in ground systems in very similar form to that which they would assume
on a flight system. The additional discussion required to address the ground portion will
therefore be minimal. Test systems, which in this architecture are essentially a combination
of the eventual ground system plus a simulated flight environment, will be discussed last.
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4. 1. 1 Basic Systems

Below a certain level, especially where computing resources are highly constrained, the
overhead of a sophisticated architecture can become unreasonable if it too highly focused
on the larger effort. However, the UFGA must not abandon smaller applications.

Instead, the nature of software components at the lowest levels of the UFGA architecture
must be such that each addresses the comprehensive local needs of its associated hardware
element.

That is, each low level component of the UFGA architecture must manage all aspects of a
particular collection of hardware that collectively performs a highly integrated function.
This will typically involve local maintenance and control of the hardware, often in a
reflexive manner, in compliance to simple commanded goals and constraints. It will also
involve reporting the results of these commands, including the status of the system and its
ability to support the commands. And where goals cannot be met, there will be sufficient
local actions taken to mask problems or at least preserve a safe configuration. A small
number of operating modes will generally describe the whole component, all elements of
the system working collectively to a single end.

The internal structure of these elementary components of the architecture is not overtly
dictated by the architecture, except to the extent that it meets infrastructure constraints and
subscribes to the external interfaces imposed by the architecture. Therefore, there is no
point in discussing further hierarchical structure within the component.

Low Level
Software Component
(structure hidden)

Hardware

External Interface

For compact systems such as micro-rovers, surface penetrators, and the like, where
extremely efficient implementations are demanded, this can be sufficient to meet all local
needs. That is, for such systems, the “flight” portion of the UFGA may consist of only a
single low level component. By addressing low level software components in this manner,
a full UFGA implementation is still possible even for simple systems, since this lowest
level component is a complete solution, and only this lowest level component need reside
with the fielded system. This extends UFGA support to such systems, while allowing them



X2000 Software Architecture Definition 5/12/97

21

nevertheless to operate within the context of a larger implementation, the bulk of which
resides elsewhere, such as on the ground or in a remote support vehicle.

The architecture here seems to be that at this level everything but the interface is outside the
architecture. Explain.

In more complex systems several such elementary components may reside in the same
system, each dealing with a different subset of the hardware. This situation is described in
the next section.

4. 1. 2 Cooperative Interaction of Functions

A larger system will be comprised of several low level functions working cooperatively on
a larger task. These may be instruments, sensing or actuation assemblies, power supplies,
or other components of this sort.

In this context, low level components can be associated with what are generally referred to
as hardware managers, but it is important not to impose this interpretation too strictly.
There will be situations where inherited designs bring with them pre-existing local
software, which the rest of the UFGA must accommodate. By not imposing internal
structure on low level components, the architecture is better suited to deal with such
inevitabilities — even if it has to put a wrapper around such components to help them
adhere to interface standards. After all, this is effectively the same function provided by
hardware managers for their associated hardware.

Making each low level component of a larger system relatively self-sufficient, in the
manner of the small independent systems described above, changes the collective
architecture of the low level components only in regard to their physical affiliation and
interaction, and the expediency of intercommunication this affords. Fortunately these
changes are complementary.

This acquired need to address interrelationships and collective conduct introduces the next
layer of the architecture — those components which build larger functions from lower level
components by facilitating and managing their interaction in a productive way, adding
additional processing if necessary, and then presenting this cooperative behavior through a
single interface to higher levels. Coordinating sensors and actuators (via their low level
managers) into a control system is an example of components at this level.

There is no attempt at this stage to consider elaborate goals coordinated over long time
frames. Instead, this first intermediate layer is characterized by aggregate capability that
mimics in many ways the nature of its single constituents. That is, the collective behavior
too will include maintenance and control functions, meeting relatively immediate goals and
constraints, reporting status and activity, reacting to problems and so on, in a fairly
reflexive manner. The main difference is that the internal interactions contributing to
behavior at this level are happening within the context of the unified architectural structure.
That is, the method of interaction among components in this layer will be dictated by the
architecture.
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Low level
Components

Intermediate
Layer
Software
Components

External
Interface

Beginning at this level, the interdependence of components may vary by function and
circumstance such that the system becomes multi-modal, sometimes capable of supporting
parallel activities or of configuring components in assorted combinations to different ends.
More elaborate goal and constraint commanding methods become necessary and must be
explicitly recognized within the architecture definition.

Each component of this layer will typically be dedicated to a particular set of related
functional modes. Many will directly access low level objects, though not all need do so,
working instead through intermediaries in the same layer. Therefore, some components in
this layer will be subordinate to others. Generally between two linked components, if one
component is ever subordinate to the other the reverse will never be true. Thus, while there
is no further layering among these components, there is a partially ordered hierarchy among
them.

Some pairs will be linked as peers, generally when both are subordinate to a common
controlling component that supervises the link. Not all pairs are linked, nor must the
topology be static. These relationships are established by the needs of each function as
provided by or to other members.

It is possible, and probably common, that some components will be subordinate to two or
more others. Thus the topology of the hierarchy need not be a tree. Nor should there be
restrictions on the span of any such link.

Components may then be in competition, depending on the mix of present goals. Since this
occurs at visible points within the architectural framework, mechanisms will become
necessary within the architecture to manage the disputed resources and resolve stalemates.
However, in a relatively steady state environment these allocations may still be handled in a
reflexive manner with bounded expectations on the resulting behavior. This gives the
source of commands a basis for planning activities over long time spans.
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There is a question regarding the extent to which desires expressed earlier for incremental
assembly and variable fidelity execution should be satisfied within this hierarchy.

Incremental assembly (from the bottom up) is answered by noting that any component high
enough in the hierarchy to have no superior can be eliminated without impact as long as
subordinate components have a defined, safe behavior in its absence. This is an important
property all components must possess, not only for this purpose, but also for general
robustness in the face of problems. Furthermore, this requirement propagates outward to
the system hardware, which likewise must establish a safe state in the absence of
supervision.

Variable fidelity execution can be addressed in various ways, including simply substituting
simpler versions of all lower level components. There are situations, however, where this
is not desirable — where one clearly wishes to address only higher level behavior. Goal
directed commanding provides part of the answer, since its whole purpose is to hide the
details of lower level operation, making goals happen despite disturbances. Provided there
are no insurmountable resource conflicts, one may assume goals are met and therefore not
bother to include the lower level components that perform the detailed operations.
Realistically though, it isn’t possible to ignore all potential conflicts. The best that can be
done is to bound the behavior of missing components to some extent and retain at least
enough of the lower level behavior to address the remaining issues. Each component
should therefore possess bounded behavior under most circumstances, and be able to
inform higher components of these bounds as part of establishing every goal.

4. 1. 3 Coordination in Time

While the goals instructing a moderately complex system can be elaborate, spanning long
time intervals and parallel functions, the goal elements directed to components of the
intermediate layer will necessarily remain at a moderate level due to their lack of any overt
control over the system as a whole and inability to see far-reaching global consequences.
The elaboration of system level goals and their coordination to achieve a common,
overarching set of objectives requires some form of broad executive control.

One approach to this need is simply to continue building the previous layer in an ever
deeper hierarchy until some component emerges at the top, serving as the interface for the
entire system to the outside world. In keeping with the description for components of that
layer, the type of control that results remains essentially reflexive, with high level goals
elaborated through downward direction, advanced appropriately through feedback from
below, and all activities coordinated to eliminate interference as the need arises.

At some stage in the hierarchy, though, this becomes limiting if goals at the highest level
remain singular in time. Potential for parallelism in the lower levels is not fully exploited,
and any notion of an agenda or preparation for future goals remains outside the system.
That may be appropriate in some cases, and if so the portion of the architecture allocated to
flight implementation may end with only the first two layers.

Otherwise, it becomes necessary to put some level of control over the timeline into the
flight system. At the level where protracted management of time becomes a dominant aspect
of a component’s functionality, new issues begin to arise that are difficult to handle with
purely reflexive methods. This is also the level at which the particulars of various system
functions become sufficiently distant to enable a more generic control architecture.
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Recognizing and providing solutions for these issues is the objective of the next layer in the
architecture.

Time-based Sequencing

Time-based sequencing engines have been the traditional approach to dealing with time in
past systems. Timed sequences provide the flight system with a superficial grasp of the
future. If all goes according to plan then what should be done when is fully represented.
Embellishments of this basic scheme can be elaborate, with hierarchically constructed
sequences of sequences, “parallel” sequences, “parameterized” sequence constituents(i.e.,
macros), and so on. However, the axiom of predictability that enables time-based
sequencing to work sets definite bounds on the range of systems that can use it.

The great success of this approach so far has been largely due to flying missions where the
spacecraft either stays far away from a celestial body, or plants itself at one spot on its
surface. Some types of uncertainty can be dealt with via goal oriented commanding, but
without any feedback into the sequence itself, every such action must be bounded by worst
case times and are local at best. Any remaining uncertainty that can’t be dealt with in
advance is generally handled by hunkering into a safe state while the ground regathers
some understanding of the environment that allows it to get back into the prediction
business. This has worked because we have done our best to avoid circumstances where it
doesn’t work, and because for the first few decades of space exploration there have been
plenty of new targets fitting this restriction. This convenience can’t last forever, though,
and we are already beginning to see the end of it.

The limitations of time-based sequencing have become most painfully obvious in the past
upon encountering uncertainty without the possibility of ground intervention. This is
apparent, for example, when some critical undertaking like orbit insertion must be
fashioned out a time-based sequencing system. Conditional waits and retries have often
been the extent to which the core method could be augmented. Most of the actual effort to
make this reliable has been accomplished outside the timed sequencing model.

These limitations are not cause to abandon this approach. They merely suggest that its
scope of application is far from universal. Consequently, there should be room within the
UFGA for it when appropriate, but other approaches must also be available.

Event-based Sequencing

The next set of enhancements to time-based sequencing generally considered allow the
initiation of timed sequences to be governed by trigger events, or branches within them to
be governed by system state. This can add a great deal of power and flexibility to the
sequencing process, and provides a level of capability adequate to capture many missions
where simple timed sequences would fail. Uncertain arrival times and distances on fly by
missions can be accommodated within this model, for instance. Similar capability has also
been used to implement system level fault protection.

With enough work a basic system of this sort could be used to do virtually anything
imaginable. It provides all the capabilities of a procedural programming language, limited
only by the access it has to system state, and the expressiveness of the conditions it is able
to represent. In fact, procedural languages specifically suited for such applications have
been developed. These provide a substantial improvement over the methods commonly in
use today. Of course, it is still always possible, if appropriate, to revert completely to pure



X2000 Software Architecture Definition 5/12/97

25

time-based sequencing with such languages without having to resurrect an old sequencing
engine.

The UFGA should also support such languages. Even better approaches are available,
however.

Advanced “Sequencing” Languages

Despite the power of procedural sequencing languages, it can still takes a great deal of
work to implement the sorts of goals and constraints one wishes to effect. This is especially
true when attempting to organize multiple, competing, conditional threads of activity. Such
situations are already common and will become the norm for ambitious future missions.
Even when one believes a set of procedures is in place to handle the required goals and
constraints, it is never clear from inspection that they truly capture one’s intent. Testing
must be exhaustive in order to build confidence, and there is little ensuing benefit from the
development and test of one procedure that can be applied to the next.

Fortunately, while such procedures are difficult to create and verify, expression of the
governing goals and constraints themselves is generally much more straightforward.
Therefore, there is a great deal to be gained from a declarative style of “sequence”
programming, which can leave the timely elaboration of goals and constraints into actions
to an automated process.

This results in a number of important advantages:

• Implementation of one’s intent is directly verifiable.
• Priorities and alternative actions are easily expressed and incorporated into the

process. This includes notions of which are expendable versus which are worth
retrying.

• Much more complicated networks of temporally constrained conditions can be
imposed upon a system than is practical otherwise.

• The system itself can tell you when it cannot meet its requirements.
• The engine behind the automation, where the investment is heaviest, can be reused

in almost any context. Once verified, this certification carries over from one
program to the next.

• Goals and constraints can be merged, dropped, or altered incrementally without
having to rework issues of interaction. Giving up due to problems, or having to
start over, is not necessary — a feature that can be crucial in critical situations.

• Changes due to faults, shifting environments, and other factors can be
accommodated automatically and on-the-fly.

• The goals and constraints can themselves be the object of other programs, such as
planners, making integration of such technologies easier.

It should be noted that this approach does not prevent the direct specification of timed or
event driven activities — at any level. In fact, this highlights one more advantage of the
declarative approach:

• A mixture of externally directed mission activities (e.g., science observations) and
autonomously generated activities (e.g., orbit corrections) can be more easily
intermingled, especially on short notice.
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The Executive Layer

Which of these approaches is used has little effect on the resulting structure of any flight
system that includes the executive layer. This layer consists of single component (or
collection of components working together for a single aim) with interfaces to all visible
components of the previous layer. The difference from one approach to the next lies in the
degree of feedback exploited. Time-based sequencers use virtually no feedback, whereas
more advanced approaches can potentially monitor a system down to a very low level of
fidelity.

Executive
(internal structure not shown)

Intermediate and
Low Level Components

Hardware

External Interface

There is an obvious trade to be made between the level of distributed reflexive behavior
permitted in the lower layers versus the degree of central control asserted from the
executive layer. It must be stressed, however, that these are not competing issues. Rather,
they are complementary issues that must be balanced in light of the circumstances for each
mission. There is not one ideal mix for all situations. The UFGA must both accommodate
this mix and allow for its tailoring to each application.

It should also be noted that the presence of “sequencing” capability in the executive layer by
no means prevents reduced forms of it from being present in components in the lower
layers. There are many needs and opportunities for sequencing in these components, even
though they may be very limited in scope. Therefore, another feature of the UFGA should
be to make such facilities (in probably simpler form) broadly available in lower layers,
without having to replicate them everywhere they are needed.

Finally, it has been noted that each of the approaches presented supports a representation of
the preceding simpler approaches. That means that any input understood with one approach
should be understood, in concept, by each of the more capable approaches. Moreover, it is
clear that some of the components in lower layers will likewise be communicating in similar
terms that are conceptually just smaller renditions of the more capable executive. In the
UFGA this idea should be moved beyond concept into reality by finding a universal
protocol for the expression of such communication, whether single commands, simple
sequences, or complex networks of activities.
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Internal Structure

As noted, the executive layer need not consist of a single component. It may be internally
complex with functionality divided among components of different specialties. It can be
anticipated, however, that these components work among themselves in a much more
conflict free manner than at lower levels. This is due to the nature of the executive as the
ultimate resolver of conflict. If it has its own internal conflicts, there is no further appeal,
so they must be dealt with internally. That isn’t to say that all conflicts arising from lower
levels must be addressed completely by the executive. It may in turn wish to appeal such
conflicts to higher levels still (e.g., ground operators) for ultimate resolution. The point is
merely that such unresolvable conflicts should not arise from within the executive itself.

This is not a trivial qualification. The difficulty of achieving such clarity can be seen, for
example, when redundancy exists in the portion of a system which houses the executive.
How does the executive decide when to move from one home to the next? Can an executive
in so much trouble that it needs to move be trusted to make the decision in the first place,
and then carry it out successfully? Having moved, how does it make sure no defective
clone is left behind? Should there instead be two executives that try to agree with one
another? How is a defective executive discovered? How is it terminated? Whose decision
should that be? How is it possible to guarantee a correct choice? Should there instead be
three executives with a majority vote? How complicated does this have to get?

Such questions get no simpler when redundancy is absent. They merely shift to issues of
when the executive decides to step aside, letting lower level behavior take charge of system
safety.

Issues of this sort make the executive layer more than just a high level extension of the
intermediate hierarchy described above. The issues confronting it are unique, and
investment in them can be large. Therefore, an executive is one component (or set of
components) more profitable for reuse than most others, and consequently should be
developed with great flexibility in mind.

4. 1. 4 Deliberation

The tasks performed by the executive are dictated by a “sequence”, or more generally, by a
set of goals, along with a description of the temporal and conditional relationships among
them, their dependencies on external state, and information about relative priorities,
alternatives, and constraints. The term “sequence” is taken below in the more general
sense, despite the serial connotation of the term.

The creation of a sequence can be quite complicated. In order to devise rational behavior
that will achieve the goals without violating any constraints, one must know about all the
near term and longer term interactions among the goals, sub-activities, resource
contentions, and so on. This type of global reasoning about how the spacecraft will achieve
its goals is the objective of the deliberative layer of the architecture.

Planning and scheduling systems are a prime example of deliberative systems. These take a
set of high level goals as input and produce a sequence of lower level activities that achieve
the goals while satisfying operational, resource, and other constraints. This is a difficult
problem, and a powerful reasoning engine is needed to automate this process. Depending
on the efficiency of the deliberative system and the complexity of the reasoning problem
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itself, it can take significant computational resources (minutes to hours) to produce a useful
sequence.

At the other end of the spectrum is reactive or reflexive reasoning, which makes fast
decisions based on local information. This kind of reasoning requires fewer computational
resources than deliberation, but cannot reason about all the global implications of its
actions.

Many intelligent agent architectures have both deliberative and reactive components. The
deliberative portion is necessary to plan the longer term behavior of the agent, and the
reactive portion is necessary to react quickly to unexpected or unpredictable environmental
events. Without deliberation, the reactive system can make locally optimal decisions that
make longer term goals unachievable. Without reactivity, the deliberative system cannot
react quickly enough to external events.

The UFGA must therefore support both reactive and deliberative components. The
executive layer and its subordinates provide the reactive functions in the UFGA. The
deliberative system sets up a long term plan of activities which the reactive components
carry out. By restricting reactive decisions to meet explicit assumptions and constraints in
the plan, the reactive system can deal with unexpected events but still guarantee the validity
of the plan. This prevents the reactive components from "painting themselves into a corner"
while still allowing fast reactions to external events. Such boundedness must be a feature of
the UFGA executive and lower layers.

Traditional flight operations can be considered a hybrid architecture, where the mission
planning personnel are the deliberative system and the flight software is the reactive
system. Simple engines, such as sequencers that do macro expansion, do not perform any
deliberation directly, but rather invoke the considerable deliberative effort of human
planners to coordinate all the complex interactions (much like block expansion is
coordinated now in traditional sequencing). This requires much less computation, but much
more human involvement. Therefore, the human component of operations cost is not fully
addressed by this approach. Moreover, the timeliness of data accessible for such planning
and scheduling can be quite poor. This is adequate to meet many situations, but due to its
limitations, automation of the deliberative process is a key objective of the UFGA.

Initially, automated deliberative processes on the ground can work with a reactive system
on board. The UFGA should support a scaleable level of autonomy, from detailed
commanding at this level, to fuller autonomy where the automated deliberative and reactive
systems in the flight system are given considerable decision making authority.

Defining the structure of the architecture at this level can be perplexing. It may seem at first
that the executive layer is subordinate to the deliberative layer. This seems especially true
when sequences come from the ground and the executive is the entity being commanded.
On the other hand, sequences must occasionally be abandoned in the presence of
unforeseen circumstances. In a fully autonomous system, the response could be to re-
invoke planning and scheduling with new inputs on the nature of the new situation.
Alternatively, the situation might be appealed to ground intervention. Either response is a
reflexive action clearly initiated by the executive.

This dilemma is resolved by noting that both execution and planning/scheduling are
subordinate to a higher authority. In the case where ground involvement is requested,
humans will likely fill this role. In a fully autonomous system this role is filled by an
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automated agent of the ground that is “aware” of mission objectives and priorities. Either
way, both the reactive and deliberative components are at the disposal of this entity, which
may be referred to as the operations manager.

Before considering the resulting structure, however, note that the deliberative system is not
just a single component, nor need it be viewed as residing purely in a deliberative layer.
Deliberation, after all, is not the solitary occupation it may seem. First of all, large amounts
of data about the state of the system may be required to form intelligent plans. To be up to
date, this information must come from components lower in the architecture. Second, the
analytic abilities necessary to assess various system functions may lie (and should lie)
within the lower level components of the system which perform them. For these reasons,
any deliberative component requires links into lower level components to gather data and
request services in support of the deliberative process.

Access points into the system should be adjacent to those exercised by the executive. That
is, inquiries for deliberative support should go through the same hierarchy. Otherwise, it is
possible for the eventual executors of a plan to find the plan inconsistent with their
capabilities. This would violate basic modularity principles. The resulting structure looks
like this.

Deliberative Support
(mirrors executive
hierarchy)

Deliberator
(e.g., Planner/Scheduler;
internal structure
not shown)

Operations Manager

Given this structure, it is apparent that reference to all the new deliberative capability as an
additional layer is inappropriate. Only the operations manager lies in a new higher layer.
The top level of the deliberative branch is a peer to the executive branch, and the
components supporting deliberation are at the same level as corresponding components in
the execution hierarchy. Most of the new structure is an augmentation to the structure
already described.
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Defining the structure in this way is important for one crucial reason. In particular, note that
the entire deliberative hierarchy may reside on the ground. This describes the traditional
ground sequencing process, as well as any advanced sequencing process where it has been
decided, nevertheless, to retain deliberative action primarily on the ground. On the other
hand, this structure also supports a fully autonomous system where deliberation is
performed largely in the flight system. Thus this structure supports the notion of migration
to flight all the way from traditional sequencing to full autonomy without fundamentally
altering the architectural structure.

In this structure it is the operations manager that invokes planning activities. It is also the
operations manager that commands the executive, either with sequences produced by the
deliberative process, or directly, making it possible (if perhaps not advisable) to bypass the
deliberative process. If the executive determines that a sequence can no longer be executed
in its present form, it informs the operations manager of this problem in a completely
analogous manner to the way subordinates inform the executive, and so on down the
hierarchy. It is the operations manager’s decision whether or not to invoke a replan — an
essentially reflexive behavior! Whether it does so may depend on the criticality of the
mission phase in juxtaposition to safety and long resource considerations. Therefore, the
operations manager may be thought of as super-executive, operating reflexively from a
very coarse grain sequence of mission goals, priorities, and constraints. Present day
operations managers are teams of humans. Fully autonomous systems hand this
responsibility to an intelligent agent in the flight system.

Mission Plans

In this concept it is possible for systems at the autonomous end of the spectrum that
mission plans move from broad allocations and guidelines made for human consumption to
formal specifications made for machine consumption. As such these plans will assume a
shape similar to the more detailed sequences discussed earlier. The essential differences
will be that goals are longer term and higher level, dealing with major mission phases and
events, priorities will deal with strategic issues such as safety goals versus broad mission
goals, and constraints will deal with issues like long term resource consumption —
sufficiently so that involved deliberative processes can be included in their methods of
behavior.

This is also the level at which human involvement is irreplaceable. Therefore, the
generation of mission plans will always be the domain of humans, no matter how
automated the tools which support them.
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Traditional

UFGA

Ground Personnel

Ground Support Tools

GroundFlight

Partial Automation

UFGA

Ground Personnel

Ground Support Tools

GroundFlight
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Fully Autonomous

UFGA

Ground Personnel

Ground Support Tools

GroundFlight

Planning Granularity

Granularity of reasoning in the deliberative process, whether fully automated or not, should
be dynamic, as dictated by the uncertainties in behavioral bounds in lower level functions
for various situations and the need for optimality or long term constraint satisfaction.
Where possible, it is generally advantageous to plan at the coarsest level, letting lower level
processes expand high level goals into detailed actions. This is especially true when
uncertainty is greatest and a highly reflexive approach is necessary to react to the situation
as it unfolds. Critical events often have this character, but it also describe a typical day of in
situ exploration. Coarse grain planning also applies, though, when the schedule is
relatively relaxed, allowing reflexive processes ample freedom of action, even if the result
isn’t too efficient. This level of automation might handle large stretches of a typical
mission.

On the other hand, when conditions are well known, but there is strong motive to optimize
a sequence, planning to a finer level of granularity may be appropriate. Science observation
sequences may fall into this category. Detailed planning may also be necessary in a highly
constrained situation where purely reflexive processes are unlikely to find an adequate
series of actions satisfying the constraints.

Most missions are likely to have a blend of these situations. Therefore, the level at which
deliberation occurs should be adjustable as the mission progresses, for example as part of
the mission plan.

Replanning

A potential problem with deliberative processes is the time they can take to generate a plan.
With enough lead time this is not an issue. Working from the mission plan, it may be
possible to start the next phase of planning hours or days in advance, since the end point of
the previous stage is well defined. However, in an unanticipated situation that requires a
prompt reaction, this is unsatisfactory. Reflexive actions may be able to deal with the
immediate situation, but if a full response requires rapid regeneration of the sequence, there
is a problem.



X2000 Software Architecture Definition 5/12/97

33

Traditional sequencing has partially dealt with this predicament by breaking so-called
“critical” sequences into short restartable chunks and then highly engineering the responses
to problems for that particular set of activities in an attempt to put the interrupted sequence
segment back on track. In addition, contingency sequences are often prepared to deal with
certain scenarios that can be anticipated and where staying on the original plan is not
possible. These are limited methods of dealing with the problem, and so expensive that
their use is confined to only the most severe circumstances. Problems that arise during
more mundane activities generally result in dropping large sequences that can last weeks.

Besides emergencies there may be other motives for wanting to alter a sequence in
progress. New constraints or new goals based on information that was not previously
available are examples. Unless windows are left in sequences specifically to permit the late
addition of new activities (an inefficient and not necessarily adequate approach), the only
way to deal with such changes while leaving the sequence unchanged is to let reflexive
processes sort it out. For the same reason that deliberative processes are needed in the first
place, this is an unsatisfactory approach.

The automatic ability to replan addresses some these concerns, but if replanning takes
hours, then hours of activity are lost. The extent to which this can be shortened determines
the extent to which replanning becomes an effective tool both in contingency situations and
in the normal adjustment of the mission plan. One approach to this problem is a deliberative
process that is able to iterate from a previous plan, adapting just enough accommodate the
new input. Another is a deliberative process that generates successively better plans starting
from a crude but “correct” initial product. This way, it is able to provide the best available
when needed rather than having to wait for the undiminished process to play out. Even
when there is time to deliberate to an ultimate conclusion, the ability to pause part way to
incorporate new input can have significant advantages. However it is accomplished, these
flexibilities in the deliberative process should objectives of the UFGA.

Links between Reflexive to Deliberative Processes

In the structure described above a duality was suggested between each component in the
execution branch and a counterpart in the deliberative branch. These doublets cannot exist
in isolation from one another, even if the first resides in the flight system and the second in
the ground system. The deliberative component shares information with its executive
counterpart, and when flight conditions affecting it change, the deliberative component may
need to know about it.

From an architectural point of view, this implies that there is a peer to peer link between
such pairs of components, even if this link spans interplanetary space. The UFGA should
explicitly provide for such needs.

Monitoring Services

Software components, and the hardware they serve, can be coupled in ways not overtly
reflected in the hierarchy established by the architecture. In fact, part of the reason for
reflexive behavior in the system is to justify a level of ignorance about such things. It may
still be wise to monitor such interactions though, to guard against changes that violate
assumptions. Furthermore, it is often the consequences of these overlooked interactions
that provide the clinching evidence against a particular device as the origin of a fault. This
means that some sort of monitoring service, looking for interactions not strictly within the
avenues of normal component discourse may be necessary.
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If for no other reason, basic telemetry will always be needed where unfettered access to
data may mean direct access to each and every component, regardless of the functional
hierarchy.

This does not imply that the structure as described so far has omitted something essential. It
does suggest, however, the existence of components that are in some sense omniscient,
needing access to many if not all other components. The UFGA should provide the means
to handle such functions efficiently.

4. 1. 5 Distributed Systems

Have all layers of the architecture been identified? Not necessarily, but at this point it is
possible to build upon the capability of existing layers, expanding functionality through
nesting and parallelism.

For instance, note the similarity in structure between operations personnel providing
mission plans to an intelligent agent with the help of ground tools to an automated
operations manager providing sequences to an executive with the help of deliberative
processes. The hierarchy within the execution branch can be similarly nested if two or more
relatively independent systems comprise the executive’s domain.

Suppose, for example, that an orbiter is in charge of a family of small rovers or aerobots.
Each of the in situ systems could possess it own internal executive with subordinate
components, but this collection of executives might be under the control of a supervising
executive in the orbiter where most deliberation occurs. Similarly, independent spacecraft
flying in formation might take direction from a common mission planner on the ground or
in one of the vehicles.

Deliberation might likewise be distributed among specialized deliberators which generate
fully formed plan constituents (under constraints) which are then incorporated into a larger,
more general plan.

Differentiation and segregation of structures within the UFGA in this way should be the
method by which the architecture extends itself over a diverse array of distributed
configurations.

4.2 Ground

Much of the ground portion of the UFGA in this layered approach has already been
revealed. From the mission plan through deliberation, sequencing, and execution, the
ground plays a greater or lesser role depending on how much of the architecture is retained
on the ground — capability moving a layer at a time. The architecture, as described,
provides a broad spectrum of choices on this division.

Other issues regarding the flight ground split are less structural in nature. For example, the
amount of on board data reduction that occurs can be decided almost invisibly within the
context of the structure. This is an orthogonal issue that involves trades on bandwidth,
storage, computational power, compression losses, and so on. The impact on the
architecture has more to do with making sure such trades do in fact remain independent.
Nothing about the architecture itself should impose a choice one way or the other.
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Other issues to be discussed…

Data bases and archiving

4.3 Test

o

5 Software Structure

A software architecture may be described both in terms of the general structure it imposes
upon a software design without regard to any particular application, as well as the more
particular functional organization imposed by the application. This section deals with
features that transcend application issues. Functional issues are discussed in a subsequent
section.

As a general architecture, to be applied over a progression of applications, the UFGA
requires a software structure that permits inheritance and migration of capability, with the
consequent desire for uniformly implemented modules that can be composed in different
ways. In addition, the interactions imposed by shared processing, communication, and
other infrastructure, the hierarchy of a layered organization, the mutual high standards for
reliability, testability, and other attributes, all motivate norms of implementation across
components of the architecture. Even within a single application, a harmonious software
structure is important in generating a manageable partitioning of the effort that can be easily
integrated.

While these statements may apply to virtually any system and there are many competing
approaches to their realization, there are nevertheless common obstacles faced by systems
for remote exploration that recommend a more narrowly focused selection of
characteristics. Moreover, an approach appropriate at one level in the software structure
may be impossible at another level, especially in a system where separate elements may be
anywhere from occupying the same computer to occupying different planets.
Characteristics deemed advantageous to meeting these needs are addressed below.

5.1 Object-oriented Modularity

An object oriented approach to software [See “Object-Oriented Software” in Appendix A —
Definitions] creates a modular partitioning of a design that improves independence of
development activities, and potential for migration and re-use. It is also well suited for
weakly coupled multicomputer architectures (often preferred for reliable, fault tolerant
designs), and for widely distributed systems inherent in remote exploration. Moreover, it
more cleanly divides into replaceable or optional partitions in support of incremental
delivery and layered execution levels.
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5. 1. 1 Hybrid Approach

Due to the distributed nature of the UFGA architecture, even in its humblest incarnations, a
system will generally consist of several active objects. The flight and ground components
of the software are clearly distinct in this way, but many other physical divisions may force
this. This does certainly not mean that all objects within the architecture must be active
objects.

At lower levels within the architecture, there are compelling reasons for several objects to
share the same thread of execution. Synchronous I/O and control functions operating
cyclically with precise timing requirements may find the overhead and sampling jitter
intolerable, especially on low performance or highly loaded computers. While the resulting
level of coupling is tighter, it is to a desirable end that is difficult to achieve efficiently in
other ways.

At intermediate levels, interactions tend to be more asynchronous and infrequent. Making
objects active, even where not dictated by physical partitioning, is an effective way of
decoupling objects.

These observations indicate that the UFGA must support a combination of active and
passive objects on the same processor. This would presumably by accomplished within the
multitasking capabilities of an operating system wherein some objects would share a single
thread of execution maintained by the operating system or by one parent within the group.

5. 1. 2 Object Interactions

To the extent possible, objects should be able to interact with one another in a uniform
manner across a wide variety of circumstances. At one extreme, one object can invoke
another through a simple subroutine call. This would be the case, for instance, when low
level objects share a process, one calling the other.

At the other extreme, an object on a computer on the ground can invoke an object on an
embedded processor on a spacecraft through a complex series of events that includes
multiple DSN passes.

It is desirable to make the programming of inter-object interactions as uniform as possible
at both extremes while recognizing that the runtime behavior of these interactions will
necessarily be very different. To accomplish this it is necessary to have an abstract
description of inter-object interactions that captures the salient inherent differences imposed
by physics and the design of digital systems.

Attributes

We identify five dimensions along which to describe these interactions at an abstract level
as follows.

Latency — How long does it take between the time an object is invoked to the
time when the invocation has its intended effect or returns its intended result?

Reliability  — What is the probability that an object invocation will fail to have its
intended effect or produce its intended result?
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Side-effects — Is the object invocation designed to compute a result or to
produce side-effects such as changing the value of a state variable or taking some
physical action? Side-effecting objects can require synchronization which non-side-
effecting objects do not.

Parameter passing — Are parameters passed by value or by reference? If by
reference, how are object interactions handled across multiple processors and
multiple memory systems, and how is memory management accomplished? If by
value, how are aggregate and linked data structures handled? (Needs clarification)

Blocking — Does object invocation cause the invoking object's thread of control
to block? If not, by what control mechanism are results returned to the invoker?

Inter-process Interactions

Active objects (i.e. processes) interact with each other in more complex ways than passive
objects. Passive objects, because they do not possess their own control thread, can only
have their methods called by other objects as subroutines. Active objects, by contrast, have
their own control thread and thus interact in more complex ways. For example, active
objects can potentially exist on multiple physical processors, possibly using multiple
memory systems. The following issues need to be addressed by the inter-process
interaction mechanism.

Mutual exclusion — Some mechanism must be provided to mediate access to
shared physical and logical resources like shared memory, mass storage devices, or
spacecraft actuators. Simply assigning each resource to its own "manager" object
does not solve the problem because the manager object may be invoked by multiple
threads. It is possible to solve the problem by putting critical sections entirely inside
single method bodies, which assures mutual exclusion if the manager object is
single-threaded. However, this approach only works if mutual exclusion extends
over short periods of time.

Preservation of argument semantics — When objects reside on
heterogeneous processors some mechanism must be provided to translate data
between the formats used on those disparate machines. There are two ways to do
this: marshaling, and putting semantic information in the message content. Both
approaches have tradeoffs in terms of flexibility and computational costs. Also,
many marshaling implementations imposed an additional burden on the programmer
because they cannot directly parse data structure format information from the source
language, and require the programmer to supply redundant information in a
different format. This in turn requires either manual maintenance of these redundant
representations, or the use of additional development tools to manage the redundant
representations automatically.

Contingency management — In multiprocessor systems, the integrity of the
computational infrastructure cannot be assumed. (In fact, the whole point of many
multiprocessor systems is to provide redundancy in the event of failures.) The inter-
process communications architecture should be robust in the face of both transient
and permanent failures.

Control flow  — How are multiple access to a single object to be mediated? Are
access processed in a strictly FIFO manner, or is there some prioritization scheme?
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Can one object cause an asynchronous change in the control flow of another object?
If so, what are the restrictions and constraints? If not, how are time-outs
implemented?

Abstract interface — It is possible to design an abstract interface to an inter-
process interaction mechanism that hides various aspects of the underlying
implementation, including: the host processor for any particular object, the
architecture of the host processor, the communications latency between objects, etc.
Although information hiding is generally good programming practice, in the case of
a widely distributed system it might be desirable to make certain aspects of the
implementation manifest in the API. For example, it might be desirable for an object
invocation that relies on data communications between spacecraft and ground to
look different from one that is a purely local computation in order to make it
obvious that a high-cost operation is being performed.

Physical Interactions

In a fully object-oriented design there is no interaction among objects except through the
methods presented to other objects. This extreme is hopelessly idealistic for embedded
applications such as spacecraft control where software plays an interactive role with
hardware. The state of a hardware manager object, for instance, may be viewed as the
aggregate of its internal variables and the state of the hardware that it manages, since the
object consults the state of the hardware as part of many method invocations. The physical
portion of this state, however, also evolves through the invocation of physical interactions.
Through this path the state of one object may influence the state of another without the
invocation of software methods.

Physical interactions may be due to tight margins on shared resources or simply due to the
interconnectedness of physical processes. Some of the more important interaction
mechanisms are:

Kinematic state, particularly spacecraft attitude, but also including trajectory and
articulations. Nearly every activity on a spacecraft imposes some constraints on
spacecraft attitude.

Subsystem states that cross subsystem boundaries. For example, sending a
command to an instrument may require a data bus to be in a particular state.

Renewable resources, such as electrical power, data storage, and
communications bandwidth.

Non-renewable resources, such as propellant and operating lifetime of some
hardware.

Electromagnetic, thermal, mechanical, and chemical interactions, such
as EMI, vibrations, propellant sloshing, and chemical residues from engines and
thrusters

Many interactions operate across multiple mechanisms. For example, on a solar-powered
spacecraft, changing the spacecraft's attitude can change both the available power and the
thermal load.
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The above interaction mechanisms are examples of what is known as physical causality, the
notion that there is an inherent ordering among phenomena due to the physical nature of the
processes that are responsible for such phenomena. While there are several approaches to
understanding and modeling causality at a level adequate for designing and building
software components, model-based reasoning techniques offer several of techniques for
modeling causality at various levels, and for separating the part of the causality that is
inherent to the physical world from that which is induced by interactions of software
components with each other and with the world.

Other Interactions

Software objects on the same processor also interact outside the strictures of method
invocation through the limiting effects of bounded computer performance. At the least, one
may view the present context as part of the shared state of each object. More importantly,
one object cannot become active without another becoming inactive. Therefore, whether or
not an object meets a deadline can depend on the operation of other objects

In addition, there are indirect interactions brought about purely by logical inter-object
competition that can lead to deadlocks or other failures.

In either case, an object confronting a failure must consider an alteration of state to deal
with the consequences, even though no method invocation has occurred.

Finally, to the extent that object oriented design is not followed, objects may interact
through other means outside of method invocation.

5.2 Inter-object Communication Standards

Points to make:

Different approaches appropriate at different levels. Low levels need low overhead,
low latency, high bandwidth. Intermediate levels need robustness and ease of
integration. Remote communication links need to deal with long time delays and to
support processes to improve reliability, and link efficiency.

Despite differences, there should be uniform standards of some sort. For example,
migrating tasks, switching the link, and so on should be transparent at some level.

[The following makes several controversial points that need to be cleared up.
• Most present inter-object communication uses RPC or client/server model

• Only if discussion regards interprocessor or intertask communication. Between
objects in the same task ordinary procedure invocation is still the norm. Many
objects sharing the same thread of execution will remain an important part of
future systems, as it is the dominant form now, so procedure calls must be
included in this discussion.

• Blocking effectively reduces the number of threads running:
• Only one thread at a time runs on one processor anyway, so this is only an

issue for interprocessor communication. We’ve always used asynchronous
messaging for that.
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• Only the calling thread is blocked, but other threads on the same processor can
continue to run, so the processor need ever be idle, even with blocked threads.

• There is often a natural sequence of execution among objects such that objects
are blocked anyway, simply because they’re waiting for the next round of
processing.

• Synchronous communication introduces a class of deadlocks
• This is true only if the blocked object is not reentrant, supporting only one

thread at a time. This is generally a resolvable situation, but there are effective
ways to avoid it in the first place, for example by restricting procedure calls
upward into the hierarchy.

• Objects can be internally multithreaded. This is often the only basis for
resuming execution after sending a message anyway when the message expects
a response.

• Asynchronous communication makes this class of deadlock impossible
• The same potential for deadlock exists with asynchronous communication if a

reply is required to proceed and the object blocks without it. That is, the
communication system itself may be asynchronous, but objects can add their
own synchronization requirements and reintroduce all the same behaviors as
synchronous communication.

• All concurrent threads of computation to continue while data communication
proceeds.
• Only true if they have something useful to do while waiting for a reply (often

not the case), and only useful if concurrent threads are on different processors
so more than one can run.

]

The UFGA will be a distributed system, encompassing multiple concurrent active objects
or tasks running on (potentially) multiple processors. No such set of objects can function
as a coordinated system unless they can exchange data. The means chosen to enable this
data exchange will profoundly affect the character of the UFGA.

Most of the inter-object communication mechanisms in widespread use in the 1990s are
based on remote procedure calls (RPCs) or remote method invocation, also known as the
"client/server" model. This model leverages off software developers' familiarity with the
notion of procedure invocation. In concept, an RPC is simply the calling of a function that
resides in a remote address space; as such it can have side effects and/or return a value like
any other function call. The intent is to enable the developer to develop distributed
applications as easily as monolithic ones.

But when a function is called, the invoking (or "client") code is suspended until the
function has completed and the result (if any) is returned to it. Deviating from this
operational structure would devalue the RPC model by reducing the cognitive leverage it
gives developers. Adhering to it, though, means that an RPC must similarly suspend —
block — client code until the remote procedure has been completed and the result returned.
That is, the client/server model limits the number of objects that can actually be computing
(i.e., not suspended) at the same time, and the severity of this limit increases as the time
cost of data communication increases.
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Moreover, this "synchronous" communication introduces the potential for a class of
software deadlocks that are subtly different from the resource allocation deadlocks
discussed earlier, in that the computing objects themselves are the resources for which there
are conflicting demands. Suppose object A issues an RPC to object B, and in order to
respond to that RPC object B must issue a further RPC to object C. Both A and B are
suspended, waiting for C, so neither of them can respond to RPCs issued by other objects
until C responds. At least three threads of processing have been effectively reduced to one,
that of object C, but that's not the only danger. Suppose at some point the implementation
of C is changed such that it must obtain information from A in order to respond to any RPC
from B. There is nothing in C's source code to warn of the looming disaster, but as soon
as this change is made and A issues its first RPC to B, all three objects — and all other
objects that communicate with any of them, and all others that communicate with those, etc.
— freeze solid.

Asynchronous message passing, in which objects merely send messages to one another
and continue immediately without waiting for replies, makes this class of deadlock
impossible and enables all concurrent threads of computation to continue while data
communication proceeds. (See the discussion of the Law of Demeter elsewhere for
additional thoughts on this topic.) For these reasons, asynchronous message passing is
superior to the RPC model even if its utilization is less obvious to developers.

Basing inter-object communication on asynchronous message passing has other advantages
that are particularly relevant to the X2000 program. By enabling client software to continue
operating while data are in transit, it simplifies the implementation of communication
between a spacecraft software object and one that resides in a Mission Support Area on
Earth: communication over the deep space link takes longer than communication within the
flight processor, but the very same application programming interface can be used in both
cases without affecting the behavior of any individual object. That is, within some limits,
the implementation of the object that sends a message can be entirely independent of the
location of the object that receives it. (Tight control loops can't operate across the space
link, of course. However, the delivery of observations to a planner and of plans to an
executive might not be so severely affected by imposing or removing long round-trip light
time delays.) This in turn simplifies the migration of functionality between the spacecraft
and the ground, an important feature of the UFGA.

Finally, asynchronous message passing greatly simplifies — perhaps enables — the
implementation of highly fault-tolerant software architectures based on parallel software
object populations that "vote" at key points in the flow of processing. By thus reducing the
need for radiation-hardening of flight computers, this technology offers the potential for
significantly reduced spacecraft cost.

5. 2. 1 Layered Hierarchy

A wealth of interaction mechanisms make it more difficult to design layered hierarchical
control for systems like spacecraft than for systems where the components are more loosely
coupled. For example, a conventional computer system has a layered control system with
device drivers at the bottom, operating systems in the middle, and application programs on
top. But this is only possible because the writers of device drivers can safely assume that
changing the internal state of a plug-in expansion card in a computer will not, say, cause an
adjacent card to overheat. Such assumptions often cannot be made on a spacecraft.



X2000 Software Architecture Definition 5/12/97

42

There are two ways to address this problem. The first is to design a collaboration
mechanism by which objects negotiate with one another to insure that their interactions are
properly managed. The other is to have a supervisory control mechanisms that manage the
interactions. In practice, both techniques are necessary.

Nested Layers of Control

[“This section seems to say that control decisions can be made locally within objects. That
is, a goal object can manage the interactions of the sub-goals beneath it, decide locally
whether to abandon a subgoal, etc. However, this assumes there are no interactions among
goals, or between a goal and the subgoals of some other goal. In general, these interactions
occur all the time.

I think this approach will work well for execution, given a high-level plan (or program or
sequence) that addresses the interactions. It may also be able to solve execution-time
problems, if the solutions are guaranteed to have local effects and not violate the
assumptions of the high-level plan. However, there will eventually be problems that cannot
be solved locally. For example, if a thruster is stuck off, this will increase turn time and
may impact achievable deadbands and fuel consumption. This has implications for all of the
current and future activities requiring spacecraft attitude. The solution may require fairly
extensive juggling of those activities, which may in turn impact other activities in the plan.
A deliberative system is needed to reason about these implications and resolve the
interactions. Local repair strategies alone are not enough.

The object-based approach presented places strong implementation constraints on that
deliberative system that may not be effective or efficient.” — Smith]

I agree that local strategies are not sufficient. The idea is to have constraints on behavior
flow down along with the commands so that each object knows whether its local actions
are creating global conflict. These constraints would have to be generated by a deliberative
system and basically consist of the assumptions made by it on reasonable bounds of
operation. If an object cannot honor the constraints placed on it, this information would
flow back up until dealt with at a higher level, including reinvocation of planning. I will try
to clarify this.

Supervisory control does not mean a single point of control for a whole system. In the first
place, this not practical for distributed systems. Furthermore, its implementation would
simply create additional coupling mechanisms, compounding the original problem. Instead,
consistent with the layered approach desired for this architecture, control from each control
site is delegated downward to one or more lower objects working cooperatively. This
implies several properties of the control hierarchy which must be formally incorporated into
the UFGA architecture.

Goals — Direction to lower level objects is necessarily at a higher level than the
resulting actions taken by these objects. This generally means more than simple
deterministic elaboration of this direction, where in simple cases this amounts to
little more than a form of data compression on the interface. It is intended, rather,
that the direction be in the form of goals which are attempted in the presence of
potential uncertainty, including uncertainty in the details of interaction among
participating objects.
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Constraints — Each object must accept, in anticipation of directed goals, a set of
constraints on the actions it may use to achieve these goals. Constraints include
both limits on resources and deadlines (constraints on the resource of elapsed time).
These may be either implicit in the goals themselves or invariant properties of the
object, or they may be separately imposed by the controlling object. Either way
though, in order for an object to make commitments upwards in the presence of
constraints, it must carry corresponding authority to impose appropriate constraints
downward.

Bounds — Each object should also expect a set of bounds on the goals requested
of it. Again, these may be either implicit in the goals themselves or invariant
properties of the object, or they may be separately guaranteed by the controlling
object. Either way, it may be assumed by an object in making its commitments that
subsequent goals will be consistent with these bounds.

Commitments — Each object must have the ability to declare in advance of
accepting a set of goals whether it is capable of accomplishing these goals under the
imposed constraints and obligated bounds. Having affirmed such a request, an
object must sustain the commitment until the it is released by the requesting object.
While the commitment is held, the controlling object is free to issue goals consistent
with the bounds and constraints of the original request.

Such commitments need not be hard guarantees, but they should be of sufficient
confidence to prevent thrashing as a result of too many commitments that are made
but subsequently denied. The flexibility gained through the potential softness of
commitments is a key ingredient to attaining the loose coupling desired in the
architecture. Note especially, that when high latencies are involved, commitments
may need to be largely implicit, with the commanding object accepting a higher risk
that goals may not be fulfilled. Alternatively, commitments may need to be
established far in advance with reservations of required resources. Either approach
requires some form of planning to anticipate and coordinate needs

Priority  — To manage the degree of commitment, where guarantees are not
possible, a basis for judging the relative merit of competing requests must be
available. Therefore, requests must be accompanied by a statement of priorities. It
is conceivable that commitments might be in a nested form wherein successive
subsets might be given increasing priority.

Abandonment — An object must have the ability to gracefully abandon a goal (or
the commitment to a goal). This could be driven by a conflict that has been resolved
unfavorably through priority arbitration, or through the loss of a required resource
(possible by similar means), or due to a detected fault or some other unanticipated
change that cannot be adequately addressed at the local level. Abandonment requires
notification to the requesting object. There should be no circumstances in which
goal failure goes without notification.

Arbitration  — An object must be able to resolve competing requests locally rather
than simply referring them to a higher central control point for resolution. This is
not required or possible in all cases, but is highly desirable. It may be accomplished
by serializing goals, descoping or temporarily suspending goals in some pre-
established acceptable manner, or abandoning commitments — all in conformance
to the established constraints and commitment priorities.
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Resources — Making a commitment generally requires two things. First, the goal
and constraints must not conflict with previously accepted commitments in a
manner that cannot be resolved. Second, the object must be able to gain access to all
necessary resources. This may involve obtaining similar commitments from lower
level objects required to support the goal.

Note in this arrangement that parallel paths of control through the hierarchy are allowed
where some objects may be servicing more than one controlling object higher in the
hierarchy. Furthermore, there is no explicit requirement for a single superior authority over
all objects. Whether or not this is useful depends on the degree to which local conflict
resolution can manage all plausible situations. As necessary, central control is required to
anticipate and coordinate interactions such that conflicts either do not arise or arise only in
locally manageable ways.

Peer to Peer Interactions

The control hierarchy described above does not cover all relationships and potential
conflicts between objects. This is often because two objects share in a task equally with no
clear precedence between them, and yet may need to communicate with each other or
cooperatively use a common resource which they do not explicitly control.

It may also be because the interaction is inalterably outside the span of the control
hierarchy. This is particularly true of physical interactions between objects as discussed
above.

However, even when not strictly necessary, it may be desirable to deliberately avoid
hierarchical control for various other reasons, relying more upon reflexive interactions to
produce an acceptable emergent behavior. This might be desired, for instance, when the
level of commitment that objects can make is already weak due to environmental factors, or
in critical situations when issues of fault tolerance may take precedence over performance.
Such peer to peer interactions lead to a looser degree of coupling that can make the system
more tolerant to unexpected conditions. Tolerance to failure in the vertical control structure,
as described above, supports this approach.

When two objects, neither of which is subordinate to the other, communicate with one
another in order to perform their required tasks or through side effects of operation, then by
definition the means by which each is assured that the other is in a state necessary to
support the interaction cannot be directly via hierarchical control mechanisms. Even when a
controlling object coordinates peer objects to some extent, it may be difficult to synchronize
the transitions of two objects into compatible states. Mechanisms for peer to peer
interactions must therefore be tolerant of occasional incompatibilities and disturbances.

Peer to peer interactions may be active, where one object (the consumer) requests action of
another (the producer) and expects a response, or passive, where producer’s output is
unsolicited. One way to handle problems that are known to be temporary is to mask the
consequences.

From the producer’s side of an interaction, this can be done by

• extrapolating over a gap in support,
• queuing requests for later response,
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• performing an alternate action that is tolerable for a short time,

or by any other action that satisfies the consumer’s immediate needs. From the consumer’s
side of an active interaction, this can be done by

• suspending a request temporarily,
• retrying a failed request,
• dropping the request and extrapolating from the last available data,
• selecting an acceptable alternate action, or
• abandoning near term low priority goals.

In a passive interaction where the input is desired, the only choice a consumer has is to
consider the age of the data. The consumer may therefore temporarily mask a problem by

• extrapolating from the last available data,
• selecting an acceptable alternate action, or
• abandoning near term low priority goals.

When passive interactions are undesirable, the affected object must adjust its behavior
against the disturbance to compensate for it.

All of these actions are local responses within the scope of a single object. In some cases, it
is necessary for the consumer to be aware of a producer’s problem before it can take
appropriate action. Therefore, the UFGA must formally support the following mechanisms
in peer to peer communication.

Acknowledgment — In an active interaction, a producer must either explicitly
accept a request or reject it within the constraint of a deadline.

Time tagging — In an passive interaction with potential latency problems, a
producer must mark each output with the epoch of its production. This may also be
required in an active interaction if the requested data is not necessarily fresh.

No other formal control mechanisms are required.

Longer term incompatibilities must be avoided, but in such cases it is necessary to invoke
the hierarchical control structure described above, either through appeal to a lower level
shared object that serves as an arbitrator of the conflicted resource (the existence of
mutually compatible states), or by direct coordination from a higher level object which
obtains commitments for a mutually compatible state from each object before proceeding.

Resource Management (original cut)

[There are two additional cuts at this section below. These must be reconciled and then
merged.]

A recurring theme in this discussion has been the notion of resources. In general, a
resource can be any entity with an internal state that is subject to competing demands. In the
case of physical resources, examples of state are the amount of available power or energy,
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the amount of remaining propellant, the amount of free space on a mass storage device, the
attitude or rate of a spacecraft, or the operating mode of a peripheral. In each such case, a
single object should manage the resource, the state of the resource effectively becoming an
appendage of the object state, either through direct measurement or through tracking
models of the resource. The object becomes a proxy for the physical resource.

All requirements for a physical resource should be requested via the associated object
through the hierarchical control structure. Upon making a commitment on behalf of the
resource, the object could be granting either partial or exclusive access, depending on the
nature of the resource. Subsequent operations on that resource need not, however, be made
through the methods of that object, but could instead be side effects of another object
operating on a physical device.

For example, a commitment for power could be made by the object representing the power
resource to another object representing an instrument, while the actual use of the power is a
consequence of actions on the instrument by the other object. These objects interact at both
software and physical levels, the software interaction through the control hierarchy, while
the physical interaction is a peer to peer interaction and occurs outside the software
architecture altogether. What makes this acceptable is that the software interaction
anticipates and bounds the physical interaction. This is the essential role of a resource
manager.

Resources can also be purely software objects with no physical attachments. Examples are
objects which perform algorithmic services (such as control laws) or perform coordinating
tasks (such as sequencing a maneuver). In these cases, the object is often capable of
supporting only one of several mutually exclusive activities at a time. Furthermore, these
activities often span considerable stretches of time where the notion of interleaving parallel
activities has little meaning. Therefore, determining the activity in effect becomes a resource
issue and it is necessary for objects requiring such a service to invoke the same controls
used for managing physical resources.

In the case of pure software objects, all operations on the state of the object can be made
through the methods of the object, so there need be no interactions outside of object
oriented interactions. Nevertheless, they may occur for various practical reasons and the
same management strategy can be brought to bear.

Resource Management (proposed cut)

[“Somewhat contradicts existing text.” — Smith]

Various spacecraft activities compete for resources, and these contentions must be
arbitrated. Because resource arbitration decisions can have far-reaching global impact on
other activities, resource arbitration requires a deliberative system that can see all of the
potential interactions and has the power to reschedule or preempt activities to resolve
interactions. There are usually many resource conflicts to be solved, and resolving one
conflict may worsen the conflict in another area (e.g., moving activities to resolve a
contention over spacecraft attitude may create oversubscription of power). Planning and
scheduling systems are designed for this kind of deliberation. Reactive, execution time
arbitration based on local information will generally be insufficient.

For example, preempting power from the catbed heater may appear to be a good decision
based on local information, but disastrous in the long term. There may be an upcoming
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critical RCS maneuver that requires the catbed heaters to have been on continuously for the
preceding thirty minutes. Since the heater was turned off, the RCS maneuver is postponed.
However, this maneuver was needed for orienting the spacecraft for taking a science
image. The science image can be substituted for a later infra-red image, but that requires
warming up the IR camera now, which will pull more power. This kind of reasoning
requires a deliberative system that can look at all of the goals, constraints, resource
requirements, etc., and find a globally consistent solution. Trying to solve this problem at
the local level will not work.

However, if the effects of the resource arbitration decisions are guaranteed to be local,
either by the deliberative component or by system design, then local resource arbitration
can be done. In general, these guarantees cannot be made for all arbitration decisions, so an
architecture that only supports local arbitration will not suffice.

The architecture must support a deliberative component for resource arbitration, whether
this be an automated planner (ground or onboard) or a human planner. It should also
support reactive components for local arbitration in those cases where it is appropriate.

 Unpredictable Resource Usage

Resources that cannot be predicted until execution time are a good example of where local,
reactive resource arbitration can be used. For example, it is difficult to predict when heaters
will come on and off, though it is fairly simple to determine at execution time when a heater
needs to be turned on. The deliberative system can allocate some amount of power for use
by the heaters. A local, reactive manager determines how this power is allocated to the
heaters. If some heaters must be on or off for global reasons, these constraints are
communicated to the manager by the deliberative system.

If there is enough time between when the system knows the heater needs to come on, and
the time when it must actually be turned on, the deliberative system can perform the
resource allocation task. Local repairs are made to the plan starting a few minutes ahead,
and the plan continues execution without interruption. The advantage of having the
deliberative system do the allocation is that it can reason about global impacts if there are
any.

Resource Arbitration Methods

[Needs a small edit to remove redundancies with earlier material.]

Arbitration of conflicting demands for transient but exclusive control of shared resources is
a problem in any non-monolithic control system. The UFGA must support a variety of
arbitration strategies at various levels of resource granularity.

In the simplest case, the resource in demand is useful in isolation — that is, delivery of that
resource alone is sufficient to enable successful continuation of an element of software
execution. By simply queuing demands for the resource and locating service of this queue
in a single resource management agent (that is not itself a source of resource demand
conflicts) we eliminate conflict.

When some set of resources are useful only in combination, the possibility of deadlock
arises: task A has locked resource X and will release it only after some doing something
that requires that resource Y also be locked, while task B has similarly already locked Y
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and can't release it until it has locked X. The problem of deadlock can be solved either by
preventing deadlocks or by detecting and breaking them when they occur.

The traditional strategy for preventing deadlock is to require all resource users to lock
resources in the same order (in the example above, modify task B to lock X before locking
Y, just as task A does). This approach works, but it requires that all software developers
agree on a canonical order for resource locking and scrupulously adhere to that order. As
such it is highly vulnerable to communication failure among developers and to program
modifications that subtly change processing order and thus inadvertently introduce
violations of the resource locking protocol.

An alternative is to reduce each complex resource allocation problem to a simple one, i.e.,
handle each set of resources that must be locked in combination as a single virtual resource
and dispatch demands for that resource from a single queue. This strategy is somewhat
more robust, but it still relies on disciplined software design: every virtual resource must be
identified as such, and new virtual resources may emerge as development proceeds.

Prevention of deadlock is desirable for reasons of simplicity and efficiency, but a capability
for detecting and terminating deadlocks will always be needed for recovery of spacecraft
functionality in the event of a deadlock prevention failure. Algorithms for automatic
deadlock resolution have been a research topic for many years; they can be expensive to
develop and operate. At the other extreme, deadlocks can be detected by mission operators
and terminated by power cycling the flight computer. In general, the cost effectiveness of
automatic deadlock resolution (which is to say, the right level of investment to make in it)
varies directly with the incidence of deadlock due to failure in deadlock prevention. As in
object-oriented programming itself, good development practices pay for themselves.

5. 2. 2 Standard Methods

Points to make:

Control hierarchy, declaration of goals, constraints, etc., peer to peer resolution
mechanisms, resource management, and many other issues mentioned above and in
later sections should be formally required as standard methods on all objects.

The applied standard may be a function of level, (e.g., more efficient
implementation at lower layers), but should be uniformly applied at the abstract
level.

5.3 Object Domains

In addition to the normal bundling of data and methods associated with object oriented
design the UFGA must address the bundling of multiple related objects into domains. The
pertinent relationship among these objects is attachment to a common body of knowledge
regarding a particular device, environment, or other entity. For example, there might be a
domain for a camera with one object of the domain serving as the hardware manager,
another performing calculations for required exposure times at a target, and a third
producing simulated images for testing, and a fourth displaying images to an operator.
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There are several reasons for not simply merging all such objects into one. Most
importantly, they may be needed in different places at different times, as in the camera
example cited above. Some objects of a domain may reside on the flight computer; others in
one or more ground computers. Some objects may be needed earlier than others, or may be
discarded after test.

Even when together on the same computer, though, these objects may support several
essentially unrelated threads of execution. For instance, some may be involved in real time
operations while others support long term planning. It may also be desirable to capture
some aspect of system interaction spanning many domains in a uniform way best handled
through separate objects. For example, each domain involving a device that consumes
power may be required to supply a power model object for that device in some standard
form. Merging diverse functions in one domain into a single object, where not otherwise
required, would create unnecessary run time coupling. Maintaining and developing each
object separately may also be much easier, especially if there are motives for using different
languages for different objects.

Why bother then to bind these objects in any way? The reason is the common roots from
which many of the implementation details in each object arise. These can include, for
example, parameters, models, and state information. To a large extent, many of these
features can be resolved when the software is built. There is more to this issue, though,
than merely drawing implementation details from a common data base, or grouping such
objects in a composite delivery. During test or flight it is quite common to adjust such
information as a result of operating experience, and it is often necessary to do this during
software execution. Furthermore, it is generally desirable to make such changes
consistently over all effected objects. In the camera example, changing a sensitivity
parameter can require compatible changes to planned exposure times, to real time control
settings, to and simulation and display tools. Overt recognition of such run time coupling is
a neglected but very important issue that has created much operational difficulty on past
missions. The UFGA should finally address this issue in a rigorous manner.

5.4 “Real Time” Execution

Much of any system targeted by the UFGA must be regarded as a “real time” system. This
means that actions are subject not only to logical requirements, but to temporal ones as
well. At some level this applies to all systems. There arrives a moment when postponing
any further degrades the utility of the result beyond acceptability. When the limit pushed is
merely one’s patience, nearly anything is tolerable. One learns to temper ones expectations
to avoid disappointment. When physical processes are involved, however, the picture can
become dire.

A great deal of effort has been expended historically in eking every ounce of performance
from embedded computing systems to address this concern. With faster computers
seemingly lifting much of this burden, the allure of comparatively simple architectures
which do not explicitly address this issue has occasionally succeeded in pushing real time
design techniques into the background. It would be a fatal mistake to let this happen in the
UFGA. Matters of latency and deadlines permeate everything over time scales from months
to milliseconds. Wherever time matters, the UFGA must explicitly represent the essential
issues.
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One such issue has already been mentioned in discussing communication between objects
where replies are expected. In the UFGA each communication should have the option to
carry a deadline, beyond which it may be assumed that the communication has failed.

Another issue was the imposition of constraints on goals, where one such constraint might
be a completion time. The UFGA should support the specification of such constraints and
provide mechanisms to make commitment to such deadlines feasible.

Other time-related issues that has been mentioned are the advance reservation of resources,
and the duration of commitments. Again, both matters should be explicitly addressed
within the UFGA.

Other real time matters to be addressed must include the following:

5. 4. 1 Efficient Cyclic Task Support

At the most basic level in any system are sampled data implementations of data collectors,
filters, profile generators, control laws, and many other algorithms running cyclically in a
fairly repeatable order. When the designers of these algorithms express their preferences,
they almost invariably wish the timing to be perfectly periodic with no latency between
input and output. While this is never realizable, except in approximation, the necessary
imperfections can be maintained within manageable limits if purposeful steps are taken to
accommodate this requirement.

This has often been accomplished in the past with a simple cyclic executive. This is
efficient, but far too restrictive for most modern systems. Cyclic processes have also
occasionally fashioned from a multi-tasking operating system, but support is generally
limited to reading the clock, assigning task priorities, and scheduling timed events.
Additional capabilities have had to be added at the application level where solutions are
likely to be awkward or unsatisfying. Such capabilities include the following:

Multi-Rate Scheduling — Not all cyclic processes will want or need the same
cycle period. It should be possible to schedule multiple cycles. While it may be
advantageous to use harmonically related periods, this should not be a restriction
since occasionally a period is dictated by an external process, such as a rotation
period.

Phase Locking  — When independent systems interact on a cyclic basis, each
driven by an internal clock, it is usually desirable to phase lock the systems together
such that execution between exchanges remain synchronized. At the most
elementary level this simply amounts to agreeing on what time it is, an end that can
be surprisingly difficult to accomplish — even between computers — let alone over
interplanetary distances.

Load Leveling — When multiple cycles are in operation in the same processor,
the computational load can occasionally peak severely as cycles come into
alignment. An overload can result can be missed deadlines, lost or colliding events,
and other problems. This can be partially mitigated by shifting the relative phases of
cycles, either statically or dynamically as circumstances permit. Automatic support
for this process can be very beneficial.
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Load Shedding — When preemptive actions fail to avoid oversubscribing
computing resources, it is often better to perform alternate, reduced overhead
processing for a cycle or to skip complete cycles than it is to fall behind and loose
phase synchronization with other cyclic functions. Such actions, however, can
result in lost synchronization events, missing steps in a sequenced process, and
other problems. There should be explicit mechanisms for taking such steps that
assure that potential problems will either be handled gracefully or at least recognized
as requiring more serious action.

Time Tagging — When shifting loads, asynchronous events, and other variables
in the time line alter data sampling from an ideal schedule, the next resort is usually
to know at least when a sample was taken. This allows consecutive samples to be
correlated more accurately, sorting out the effects of sampling jitter from data noise.
Time sampling may have to be extremely precise.

Synchronous Sample Construction — It is often necessary to consolidate
data from asynchronous samples into a meaningful aggregate that represents a
single moment in time. Moreover, it may be useful to hide the effects of sampling
jitter and extrapolate such virtual samples onto ideal periodic time marks. The same
process can work in reverse, where computed outputs, ideally put into effect
precisely on some ideal periodic schedule must be adjusted to match the actual time
at which the action can occur.

5. 4. 2 Events Driven Tasks

5. 4. 3 I/O

5.5 Fault Protection (Function Preservation)

[This is a partial submission. It needs to be edited to fit into the outline and then
completed.]

___________

 A "fault" is a physical or logical defect in a component/subsystem. An "error" is an
apparent symptom/manifestation of a fault. A "failure" is the consequent inability to
perform as designed.

5. 5. 1 What is fault protection?

 The role of fault protection (FP) is to prevent failures, either by masking faults or by
detection and response to errors.  Fault protection decomposes into three phases: detection
of failure symptoms, fault diagnosis, and failure recovery.  

 Symptom Detection monitors sensor information to detect any evidence of a failure. The
complexity of this detection process depends on the diagnostic value of sensor data, on the
observability of the system behavior and on the qualitative discriminability of the possible
behaviors relative to nominal and failure cases.
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 Fault diagnosis is the process of explaining a failure condition to the occurrence of a fault.
Several factors affect the complexity of diagnosis. Diagnosis is greatly simplified when a
failure condition is symptomatic of a fault in a component. Diagnosis becomes significantly
more complex when several faults can result in the same failure condition. Active probing
can be necessary to discriminate among several ambiguous diagnoses.

 Failure recovery depends on the available repair commands that the software component
can apply on a faulty component such as hard and soft resets, retrying the operation, or
switching to a degraded mode of operation. When all possible recoveries cannot eliminate
the failure condition, the recovery of last resort is to declare the component failed and
unavailable for operation. Recovery can be more complex when active probing is necessary
to evaluate the success of a recovery action, when the outcome of a recovery is indirectly
measurable, or when other actions are necessary to reconfigure the failed component or
other resources for recovery purposes.

5. 5. 2 Architecture for Component-Level Fault Protection

 In keeping with "Capability in Layered Increments" (sec. 3.1.3), fault protection is a
responsibility that is necessarily divided among different layers of software components,
with very localized device FP at the lowest level and system FP at the highest level. Thus, a
software component is characterized by the limited set of responsibilities assigned to it. In
terms of fault-protection, the limited responsibility of a software component is bounded by
the set of local failures in its devices and sub-components occurring while executing
commands or performing its assigned responsibilities. The fault-protection architecture
describes how non-local failures are coordinated between a component and its parent.

Key elements of the local FP architecture
• The top-level components in the hierarchy are the different ground teams operating

the S/C (i.e., engineering, science, payloads) which have specific areas of
responsibilities assigned to them. The engineering component has several sub-
components corresponding to ground operations and to the overall system-level
operation of the S/C. The on-board system-level component has the responsibility
of handling all failures that have to be resolved on-board but that no other on-board
component has a specific responsibility for.

• Within a component, FP must treat the observations it receives as trustworthy; it
cannot make conclusions about the reliability of observations outside of its scope —
that's the fault-protection responsibility of a higher level component.

• For a given component, the absence of input data and the inability of obtaining
input data are two distinct events that may prevent the component of fulfilling its
responsibilities in part or in whole. When such cases occur, the component has a
responsibility of notifying its superior component that external conditions prevent it
from operating properly. To the extent possible, standard mechanisms need to be
used to refer to unknown inputs (i.e., can get data but there is none), unavailable
inputs (i.e., cannot get data, whatever it is), under-range and out-of-range inputs
(i.e., input data is outside the range of allowed inputs for this component) and
nominal inputs (i.e., input data is normal in face value).

• Within a layer, the following information must be propagated to a higher layer
when non-local fault protection is necessary: local failure symptoms detected, faults
diagnosed and local recoveries attempted.  Failures must be propagated so that
recovery/reconfiguration may be attempted at a higher level.  Faults must be
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propagated so that even if recoverable within the layer via a redundant unit, the
degraded reliability is known.

Fault protection mechanisms at design-time and at run-time

 Since software components will come from multiple sources, it is expected that there will
be some variability in terms of how fault protection is addressed among components.
Specifically, there can be no built-in mechanism to report, at run-time, information about
the specific recoveries that may have been attempted, the nominal/abnormal status of input
data and the changes of responsibility due to failures. For such components, it may be
necessary to either embed such a component into wrapper to provide the appropriate fault
protection interfaces with the higher-level component or incorporate the missing
information right into the higher-level component.

 To the extent that information about local fault-protection behavior will be shared among
components at run-time, the architecture places requirements on how this sharing will take
place. Fault-protection information exchanged between components includes:

From local component to upper-level component:

 This information includes models used at the lower-level for diagnosis/recovery and the
nominal/abnormal state of the input data used for local fault protection. This communication
needs to proceed on the basis of a publish/subscribe mechanism for several reasons. First,
the component hierarchy is not static since components can be migrated between ground
and flight processors and among processors in a distributed computing network. To
accommodate reconfiguration of the component hierarchy, it is necessary that indirect
interfaces such as a publish/subscribe mechanism be used among components to
reconfigure inter-component communication routing as needed.

From upper-level component to lower-level component:

 Although a lower-level component may be unable to handle a non-local failure condition,
the upper-level component should not take over the overall fault protection responsibility of
both. Instead, the role of the upper-level fault protection component is to reconfigure the
lower-level component as part of the recovery process. Component reconfigurations
include:

• turning off a component because the functionality it requires is no longer adequate
for the component to meet its responsibilities,

• degrading a component responsibility to accommodate resource degradation outside
nominal range.,

• redirecting component inputs and outputs to use redundant information sources and
command outlets in order to avoid inoperable resources.

5. 5. 3 Strategy

From a system engineering point of view, the role of fault protection is to prevent the
inability of a component to meet its responsibilities. Tolerable failures include those that a
component can recover locally without a visible impact at the level of the component
interface.
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___________

Strategy

Focus on Function

Tolerability versus Performance

5. 5. 4 Local FDIR

Detection

“Parity” Tests (Sparse space of legal states)

Redundancy Based

Model Based

Lower level “Events”

Peer Level Masking

Restoration, Automatic Degradation, or Safing

Notification

Failure Events

Status of Remaining Capability

Requests for Diagnostic Activity

Event Logging

5. 5. 5 Escalation through Hierarchy

Layered Detection for Coverage

Measured Response

Reactive if possible

Replanning if necessary
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Ground Role

“Not sure where this should go, maybe under fault protection, but the notion of "physical
degradation" should be addressed as an issue for the software to be aware of and handle. It
is related to periodic calibration.” — Dvorak

5.6 Operation

5. 6. 1 Startup and Shutdown

5. 6. 2 Maintenance

Module Replacement & Modification

Parameter Updates

Model Updates

Code Updates

New Objects

Calibration and Checkout

“Explain that there should be a post-launch calibration and checkout phase during which the
autonomy dial is set at minimum and lots of telemetry is sent to ground to let humans
examine operation in flight and look for stupid mistakes, like the sign of a gyro being
reversed, or other things that weren't testable in flight system testbed. This is especially
important before turning up the dial on autonomy.” — Dvorak

5. 6. 3 Selective Enabling of Control Layers

“To allow ground operations to gradually turn over control to the onboard autonomy.
During this phase the ground should be allowed to observe what the autonomous response
would have been had it been enabled; this will give them confidence in the onboard s/w.”
— Dvorak
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5.7 User Interfaces

5.8 Test

5. 8. 1 Simulation

Spacecraft

Spacecraft Trajectory

Spacecraft Dynamics

Rigid and Flexible Bodies

Fuel Slosh

Rotating or Articulating Elements

Small Forces

Sensor Input

Actuation

Loads

Forces and Torques

Thermal

Sources

Solar, Radioactive, Propulsion, Friction

Measurements

Thermal Effects

e.g., focal length

Telecommunication Links

Environment

Celestial
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Stars

Celestial Body Ephemeris

Body Features

Rings, etc.

Radiation and Particles

Surface Maps

Forces and Torques

Gravitation and Gravity Gradients

Atmospheres (density, winds, …)

Contact Models

Radiation

Emulation of missing elements

Hardware

Software

Direct Access Interface

External

Substitution

5. 8. 2 Monitoring

Interfaces

Hardware Layers

Software Layers

Diagnostic Tools

Detection

Analysis
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Visualization

o

6 Functional Areas

“There is a document on the JPL web titled "Spacecraft Information Function Taxonomy"
by Sandy Krasner, located at: http://fst.jpl.nasa.gov/jpl/function.html. This memo provides
a checklist of areas for which requirements must be defined for any spacecraft, so it may
offer a fuller outline for section 6 "Functional Areas".” — Dvorak

6.1 Commanding

6. 1. 1 Goal Directed Behavior

[This is as submitted. There is a little conflict with other sections, and part of the material
might find a better home in other sections.]

Goal Based Commanding

The spacecraft should support commanding at various levels of detail, from high-level
goals to low-level commands. This allows the mission operations team fine control over the
level of autonomy granted to the spacecraft at any point in the mission.

Each goal expands into subgoals at the levels below it, and manages resources and
interactions among those subgoals as well as interactions with peer goals. By commanding
at the top-most level, the mission controllers can set high-level objectives for the spacecraft
which the autonomy system then achieves without further direction from the ground. To
exercise more control, the ground team can command lower level goals. The spacecraft
only has autonomous control over how those low level goals are carried out, and the
ground team controls the sequencing and interaction of those lower level goals.
Commanding at the lowest level is analogous to a traditional sequence.

It should also be possible to command at mixed levels. For example, ground can uplink
several high level goals, but specify in detail how one subgoal is to be achieved. The
spacecraft carries out the high level goals autonomously, but follows the ground directions
in carrying out the subgoal. This allows the ground very fine grain control over the degree
of autonomy granted to the spacecraft. The autonomy system must be aware of both the
high-level and low-level commands, so that the expansion of high-level goals does not
conflict with low-level directives.

The architecture should also support mixed-level commanding. That is, the spacecraft could
be given a few high-level goals, but also be told exactly how to carry out one of the sub-
goals. This capability is necessary for carrying out normal operations with high-level goals
while performing specialized commanding at a lower level. For instance, the ground may
wish to execute a high-speed turn to jar loose a partially deployed solar panel, but
otherwise continue normal operations. High level goals are given for the normal
operations, with a special subgoal for the high-speed turn.
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Goal based commanding should support prioritized goals as well as absolute goals. A
prioritized goal is carried out if possible, but can be preempted if it conflicts with a higher
priority goal. Priorities can be either static or dynamic. In a static priority scheme, goals
have a fixed priority ordering. The system finds a schedule that optimizes some function of
the goal priorities— e.g., all of the priority one goals must be in the schedule before any
priority two goal can be scheduled, or assign each goal a priority value and maximize the
total value of the goals in the schedule. In a dynamic priority scheme, the priority of a goal
depends on what other goals have been scheduled. For example, getting the first science
image of a target has very high priority, but getting the hundredth image has very low
priority; or the priority of downlinking a particular data buffer increases as the buffer fills
and as the number of downlink passes in which it was passed over for other buffers
grows.

Goal based commanding requires coordination among the goals, resource allocation and
arbitration, and resolution of interactions among activities in the same or separate subgoals.
The interactions can be complex, often involving several subgoals and resources.
Resolving them requires a deliberative system that has visibility into all of the interactions
and has the authority to reschedule activities and resources in order to resolve them.
Automated planning/scheduling systems are ideal for this task.

Simple macro expansion will generally be insufficient, since the way in which the goals are
expanded depends on interactions with other scheduled goals and activities. Distributing
coordination efforts among goal, resource and activity "objects" will generally not work
either unless there is some global coordinating entity that has visibility into all of the
objects. However, visibility into objects breaks the opaqueness policy of object-oriented
design, and the coordinating entity would effectively be a planner. This is roughly
equivalent to organizing the planning model into goals, subgoals, and activity "objects" or
"modules" that contain declarative descriptions of the resource, temporal and other
constraints. The planning engine then has visibility into the various modules and authority
to change the schedule within certain constraints (such as directives from ground on how to
achieve a subgoal) in order to resolve conflicts.

The goals eventually expand into executable activities. That expansion should be robust to
execution failures. The low level activities should themselves be goal oriented, in that they
have some set of resources under their control and a well defined goal to carry out. The
software unit for the activity can decide how to achieve that objective within the restrictions
set by the deliberative system in expanding all the goals for the spacecraft. If failures occur
during execution, the activity manager should first try to resolve the failure on its own,
again within the restrictions of the deliberative system. These restrictions must be met to
prevent the plan from being invalidated. If it cannot resolve the failure, or must violate the
restrictions to do so, the failure should be passed up to the next level.

Ideally, the same behavior is repeated at the next level. That is, an attempt is made to
resolve the fault within the restrictions of the plan or else pass the failure up to the next
level. Ultimately, the deliberative system may have to generate a new plan.

One way to achieve this behavior is to pass failures directly to the planner when the lowest
level activity manager cannot resolve them. The planner has visibility into all of the goals,
subgoals, activities, resources, etc. It can immediately determine whether the failure can be
resolved with a fast local patch to the plan or whether it has wide reaching implications that
require a major overhaul. This approach is almost certainly more efficient than having
managers for each subgoal, since the information and reasoning in the managers effectively
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replicates the information and reasoning in the planner, except that the managers are
restricted to local reasoning.

Planning and Scheduling

A planner/scheduler generates sequence of coordinated low-level activities (a plan) that
achieve a set of high level goals. The plan is guaranteed to satisfy constraints on
operability, temporal ordering, resource utilization, etc. that are contained in a declarative
plan model. The planner resolves resource contentions and other interactions among
activities.

The level of planner autonomy must be scaleable. This allows ground operations personnel
to a range of control over the spacecraft, from detailed control for special situations such as
post-launch checkout or anomalies that the autonomy system cannot handle, to high-level
commanding for nominal operations. The level of autonomy can also be started low and
increased as confidence in the autonomy system grows.

The following scale of autonomy is supported by most planning systems. These levels all
use the same planner, but vary in the level of control the planner is given over spacecraft
operations.

• A ground-based version of the planner is used to expand goals into an activity
sequence (plan). The ground team can then modify the plan as desired (insert or
move activities, relax constraints in the model [flight rules] to get highly optimized
plan, etc.). The planner will check the plan against its model for constraint
violations and inconsistencies, but the ground team is free to override these
warnings. The plan is executed by the spacecraft without further expansion by an
onboard planner.

• Planner generates plan from high-level goals. Ground team can check the plan for
accuracy, but otherwise does not modify plan. The plan is uploaded to the
spacecraft for execution, and is not expanded further by an onboard planner.

• A plan is generated on the ground to some level of detail. An onboard planner
expands the bottom-most goals in the plan into detailed activities, and the complete
plan is then executed. The ground therefore controls the higher level spacecraft
behavior down to some level, and lets the onboard planner worry about the details
below that point.

• Specify only high-level goals, and let the onboard planner expand them into a
detailed plan of activities.

The architecture should support a planner based either on the ground or on the spacecraft. It
should be possible to have both ground-based and onboard versions of the planner within
the same mission, and to change the locus of control between these at will (see scale of
planner autonomy above). Ground based planning allows more ground control of
spacecraft operations. Onboard planning can also allow detailed control by the ground, but
when given fuller autonomy, an onboard planner can close loops onboard. This capability
is important for events that require the spacecraft to respond quickly to environmental
information.
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Planning and Execution Cycle

The basic cycle is simple: generate a plan, execute it, and when problems arise generate a
new plan that addresses the problems. A problem is any unplanned event that violates the
assumptions in the plan, or is about to do so if left unchecked. If a problem has not yet
violated the plan, then it can be handled within the reactive execution system. If the plan
has already been violated, then the plan must be repaired. The level of replanning (repair)
required depends entirely on how globally the problem impacts the plan. If the problem has
minor local effects, then a reactive execution system should have enough knowledge to
repair the problem without invalidating the rest of the plan. If the problem has larger
effects, then resolving the interactions will require a planner. If these effects are still
relatively localized, then iterative refinement should be able to repair the plan quickly
without impacting unrelated segments of the plan. If the impacts are major, then the
refinements will expand to the entire plan, possibly resulting in a totally different plan.
Small repairs can be done quickly by most planners. Problems that require a global replan
can be computationally expensive regardless of the planner used.

Modularity

The planner model can be broken into modules corresponding to goals, subgoals,
activities, resources, etc. This puts all of the knowledge relative to these items in the same
place. However, the "modules" will always have tight coupling with each other. By
definition, a planner deals with global interactions across subsystems and resources, and
these interactions must be captured in the affected modules of the planner model. This leads
to tight coupling.

The planning engine has visibility into all of the modules. There is no opaqueness or
abstraction barrier. This is necessary to reason about all of the constraints and interactions.
The planning problem is essentially a large constraint satisfaction problem (CSP). Just as a
CSP cannot be easily divided into independent modules, neither can the planning model. If
the CSP could be so divided, it would be easy to solve by decomposition. However, CSPs
are generally very difficult to solve and cannot be decomposed. The same applies to
planning models, or the knowledge for any deliberative system that needs to reason about
the global interactions among the spacecraft subsystems and resources.

Planning for Multiple Spacecraft

The architecture should support goal-based commanding for activities coordinated across
several cooperating spacecraft. Among the key issues are:

• Distributed planning across spacecraft.

The idea is to plan various subgoals of the overall planning task on separate
processors/spacecraft, with a central processor coordinating the effort. The
subgoals all interact, so communication among processors will be necessary (either
through the central processor, or directly among the interacting subgoals).
[Capability not available yet, but it is being actively researched.]

• Distribution of failure information

• Failure responses may involve several spacecraft.
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• Coordination of events by other than time-based means (e.g., when you see me do X ,
then you do Y. But I can't predict exactly when X will happen).

Coordinating activities across spacecraft requires some level of centralized control and
communication of planning and execution information among the spacecraft. The base
X2000 architecture should expandable to support multiple spacecraft.

Verification

 - Break plan model into modules. Typically, this is everything needed to support a
particular goal or sub-goal. Low enough level sub-goals should deal with a single
subsystem. Model can be tested from bottom up this way.

 - Use scaleable commanding to test from bottom up. Test lowest-level actions first
(roughly corresponding to the command dictionary). Then test sub-goals involving
interacting subsystems. Keep going to system level behavior by running entire planner.

 With sufficiently abstract simulator, can test from top down. Provide high-level goals and
execute resulting plans to make sure system behavior is working. Can be done before
detailed sub-system s/w, h/w and sims have been delivered.

Model validation

The autonomy engine will guarantee that the spacecraft behavior is correct with respect to
the declarative models, assuming that the engine is bug-free (this is true for all autonomy
systems, not just the planner). So one validation task is validating the engine.

The second validation task is validating the knowledge in the models themselves.

6. 1. 2 Versatile Task Specification

Sequential

Timed Execution

Event Chaining

Concurrent

Coordinated

Competing

Priority Execution



X2000 Software Architecture Definition 5/12/97

63

Combination

6. 1. 3 Level Of Autonomy

[See “Autonomy” in Appendix A — Definitions]

Spacecraft need to be commandable over a wide range of levels of autonomy, ranging from
traditional open-loop time-based sequences to fully autonomous responses to high-level
goals. Here's a strawman classification of different levels of autonomy.

Level 0: Traditional open-loop time-based sequences, e.g. "Send
DEVICE_X_POWER_ON_COMMAND message at time T1."

Level 1: Closed-loop commands that achieve a condition at a point in time, e.g.
"Turn device X on (and verify that it is in fact on)."

Level 2: Closed-loop commands that maintain a condition over a time interval, e.g.
"Turn device X on at time T1 and make sure it stays on until time T2."

Level 3: Closed-loop maintenance of conditions over temporal intervals whose
endpoints are specified with respect to runtime events, e.g. "Turn device X on no
more than five seconds after event E."

Level 4: Closed-loop maintenance of multiple conditions over time intervals, with a
mechanism for detecting and dealing with conflicting conditions, e.g. "Turn device
X on after event E1, and turn it off after event E2. Make sure it stays on at least 10
seconds," in the case where E1 and E2 are less than ten seconds apart.

Level 5: Closed-loop maintenance of multiple conditions at higher levels of
abstraction, e.g. "Configure for attitude knowledge acquisition with hot backup."

Level 6: Automatic execution of complex networks of temporally constrained
conditions, e.g. "Perform autonav imaging," or "Do orbit insertion."

Level 7: Very high-level goal-based commanding with autonomous prioritization,
e.g. "Do a site survey and send back the most interesting data," or "Fulfill as many
of the following observation requests as possible."

Note that this is a taxonomy of commands sent to a spacecraft, not of autonomy
technologies.
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Resource Management

Planning and Scheduling

6. 1. 4 Execution Logging

6.2 Hardware Management

6. 2. 1 State Tracking

6. 2. 2 Configuration Control

6. 2. 3 Consumable tracking

6.3 Data Management and Telemetry

[This is a start, but more is needed to complete the picture.]

An unmanned spacecraft is not a desktop, not a workstation, but a robot that responds to
mission events. That robot is connected through a communications network to monitor and
control systems; the network happens to be one for which at least one of the links requires
wireless transmission through space, and the aggregation of the robot's own software and
the monitor and control systems on earth is the UFGA.

In order to truly unify the flight and ground systems, and thereby minimize the impact of
flight/ground design trades and the cost of migrating functionality between the spacecraft
and the ground, it is valuable to use the same mechanism for communication between flight
software and ground software as is used among the flight processes. If the flight
interprocess communication mechanism is asynchronous message passing, then ideally that
same mechanism should be used for communication between flight software and ground
systems.

Implementations of layered deep space communication protocols, including a reliable deep
space transport layer, will support this operational model. Reliable transport entails efficient
transmission acknowledgment and data retransmission on partial loss or corruption.
Delegating responsibility for this reliability to standard, reusable protocol implementations
will reduce mission cost and risk and will simplify flight software, insulating it from any
functional differences between on-board and deep-space interprocess communication.
Operational differences will of course remain — time-critical closed control loops clearly
can't be deployed across the space link — but modern deep-space communication protocols
can help reduce the problem of ground/space software migration from one of software
compatibility to one of system configuration.

It's important to note that the client/server model of interprocess communication is less
amenable to this architecture. Issuing true remote procedure calls over a space link is
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impractical due to the very great distances separating the communicating procedures: the
sender of an RPC would spend far less time executing than waiting for propagation (at the
speed of light) of the procedure invocation and the receiver's response.

Asynchronously passed messages, on the other hand, are well suited to the delivery of
continuous, open-ended streams of time-tagged engineering data values and instrument
observations. In this model of operations, queues of messages serve many of the purposes
for which files have been used in the past (both on the spacecraft and on the ground).
However, in order to serve those purposes, those message queues must be no less robust
than files; in particular, they must not be destroyed when power is withdrawn from
dynamic memory. That is, the message queues used for flight/ground communications
need to reside in persistent storage media. The random data access made possible by
modern on-board storage technology (such as solid- state recorders) provides the flexibility
needed to implement complex persistent data structures such as message queues.

None of this addresses the fundamental problem of limited space link bandwidth. As the
requirements for meaningful science data return increase it becomes increasingly necessary
for the spacecraft to convey better information without sending more. Among the strategies
for accomplishing this goal are downlink management, data compression, and data
summarization.

 Downlink management doesn't reduce data volume but instead just maximizes
transmission efficiency. All data to be downlinked are categorized, and associated with
each category are a priority and a bandwidth allocation percentage. High-priority data
(typically relating to spacecraft health) are downlinked before all lower-priority data.
Among messages of the same priority, access to the space link is apportioned according to
bandwidth allocation percentage; this encourages the sources of those messages to issue
them in order by descending usefulness. The importance and usefulness of the data
transmitted over any given interval are thereby increased even though the actual data
transmission volume is not.

 Individual data items can be compressed in either "lossless" or "lossy" fashion as
described elsewhere in this document. The reduction in bandwidth consumption resulting
from data compression, and the corresponding increase in efficiency of space link
utilization, can be dramatic.

 Finally, a potentially even more powerful way to increase link efficiency is simply to send
the products of data analysis and summarization rather than the raw data itself. On-board
data summarization algorithms are still a research topic, and they rely on the availability of
large on-board data storage resources and spare processing capacity, but as flight missions
range further from Earth and available transmission bandwidth diminishes the costs of
enabling this in-situ analysis are increasingly justified.
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6. 3. 1 File Management

Uplink

Downlink

6. 3. 2 Telemetry

Scheduled

Event Driven

6. 3. 3 Data Management

Compression

Culling

Data Mining

6. 3. 4 Mechanism for Feedback into Subsequent Activity Plans

6. 3. 5 “Beacon mode”

6.4 Guidance, Navigation, and Control

6. 4. 1 Pointing System

6. 4. 2 Navigation

6. 4. 3 Maneuver Planning

6. 4. 4 Dealing with Constraints

6.5 Power and Thermal Management

6.6 Telecom
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6.7 Science

6.8 User Interface

6.9 Test

o

7 SOFTWARE VERIFICATION

[This section needs to be coordinated with other related sections of the document.

Also, there were two contributions to this section (both below) which need to be reconciled
and then merged.]

7.1 Cut 1

Verification is the process of checking that the software implementation satisfies the
requirements. Verification is much more than just after-the-fact unit and system testing. It
begins with requirements and extends beyond final software delivery to in-flight behavior
auditing. Verification takes several forms and appears in different places and different
phases of the development process.

This section addresses a few key issues for verification. Some of the issues listed below
have no direct architectural impact, but are included to encourage awareness of verification
impacts on the design, development, and testing processes.

• Testable requirements
• Scenario specifications
• Detailed simulation environment
• Unambiguous interface definitions
• Embedded constraint tests
• System-level behavior auditing
• Safety kernel
• Incremental builds and automated regression testing
• Code inspections

7. 1. 1 Testable requirements

As far as possible, each requirement should be stated clearly enough that it can be verified,
preferably without human involvement. Requirements that are too abstract or vague to be
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verified should be decomposed into specific testable sub-requirements. Requirements that
cannot be tested without a human in the loop should raise a red flag because that
complicates automated regression testing and suggests a vague or excessively abstract
requirement.

7. 1. 2 Scenario specifications

In order to construct good system-level tests, system engineers should define not only the
nominal scenario for a mission but also the type and timing of failures that will particularly
stress the software's recovery mechanisms. System engineers should make the following
things explicit: boundary conditions, outlying but acceptable variations in values and event
times, and type and timing of particularly likely failures.

7. 1. 3 Detailed simulation environment

The flight/ground simulation environment should be detailed enough and accurate enough
to "fly" the mission, as well as to verify individual subsystems. Such an environment
keeps designers and developers honest and does not allow them to ignore details that will
harm them late in the integration phase when the real hardware appears.

Simulation models should be sufficiently accurate that spacecraft engineers respect the
results of testing with simulated subsystems. Such models should: (a) interact appropriately
with other simulation models through electrical/mechanical/thermal/etc. pathways, (b)
support reasonable failure modes, (c) report when a subsystem is being mishandled by the
flight software, (d) support checkpointing, and (e) support time-warping.

7. 1. 4 Unambiguous interface definitions

A component interface should be defined precisely enough that it can be checked statically
(as in a compiler check of the number and type of arguments) and dynamically (as in range
checks on valid values and as checks on protocol adherence). Note that dynamic checks
that are active during ground testing may (optionally) remain active during the mission.

7. 1. 5 Embedded constraint tests

To simplify debugging, errors should be detected as close to the source as possible. This
means that every component should include constraint tests on its inputs as well as self-
tests on its own computations. When a constraint is violated during execution, this helps
enormously in localizing the site of the error. To support such tests, the run-time
environment must provide a standard mechanism for reporting constraint violations and
specifying a reaction (e.g., abort, warn, or log).

7. 1. 6 System-level behavior auditing

In addition to having a mechanism for reporting locally testable constraint violations, the
run-time environment must also provide a standard mechanism for making selected
activities visible to a system-level behavior auditor. Typically, the selected activities will
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include events, state changes, measurements that are relevant to the verification of flight
rules (e.g., "never point camera at sun") as well as checking of design artifacts (e.g.,
"initiate-turn command should be followed by turn-complete confirmation within 2
minutes"). In addition, retries and recovery actions should be reported so that it is known
that they are happening.

7. 1. 7 Safety kernel

During a mission there are some errors for which detection alone is not enough; some
actions must be suppressed and some inactions must be corrected in order to prevent
damage to or loss of the spacecraft. Accordingly, there should be a "safety kernel" that sits
logically between the hardware and other flight software. Normally this safety kernel is
transparent to and non-interfering with the higher-level software, but in cases where a
spacecraft hazard is imminent, it may suppress actuator commands or actively command the
spacecraft into a safer state. This safety kernel is an important safeguard against mistakes in
flight software as well as mistakes in uplinked commands.

7. 1. 8 Incremental builds and automated regression testing

As much as possible, functionality should be added to a system incrementally, as a
sequence of correctness-preserving transformations. For example, the system should be
rebuilt every night and tested against an ever-increasing suite of regression tests. This
approach sometimes requires careful planning and coordination among members of the
development team, but it is usually worth it because it avoids the extremely difficult
problems of integrating and testing multiple new/revised components.

7. 1. 9 Code inspections

Code inspections can be valuable in finding errors and omissions early in the development
process, but they are also time-consuming if conducted as formal meetings of several
people. A less intrusive approach to code inspections is to give the code to one or two
colleagues for inspection, with comments expected within a week or two. Besides finding
errors, inspections tend to encourage a consistent style of coding and commenting, and
reduces project vulnerability to the loss of a programmer.

7.2 Cut 2

7. 2. 1 Verification and Validation

The current conventional wisdom is that the software developed for future missions will be
so complex that traditional testing and validation methods will no longer apply, and
radically new approaches will be needed. While it is true that testing methodology will have
to change, this change does not have to be a radical departure from traditional methods. In
fact, most of the features that make testing difficult already exist in "traditional" spacecraft
control software. For example, it is commonly believed that autonomy software is non-
deterministic, and that this presents an extraordinary new testing challenge. In fact, all
autonomy software developed at JPL to date is completely deterministic. It is true that the
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system behavior is not always predictable, but this unpredictability arises because of the
unpredictability of the environment, not a lack of determinism in the software. This
situation entirely identical with that in traditional attitude control software, whose detailed
behavior is not predictable a priori, but which is nonetheless deterministic and testable.

In fact there is no fundamental difference in testability between autonomy software and
attitude control software. Both are closed-loop control mechanisms designed to maintain
certain system invariants in the face of external disturbances. In the case of ACS, the
system invariant is spacecraft attitude, and the disturbances are external torques and
imprecision in the attitude control actuators and sensors. In the case of "autonomy"
systems, the system invariants are constraints on the system state expressed at higher levels
of abstraction, and the disturbances are hardware failures.

The key to verifying both ACS and autonomy systems, and indeed any complex software
system, is to enumerate the design invariants the system is intended to maintain, and the
circumstances under which they are to be maintained, and then verify that the system does
indeed maintain those invariants. This verification can be done empirically through
empirical testing (which can be exhaustive if the term is taken to mean insuring coverage
over the range of invariants and disturbances, not control branch points) or formal
methods.

The key to this approach is enumerating the invariants and disturbances against which one
wishes to verify the system's behavior, which can be quite complicated.

One helpful design principle which can make this job easier is Law of Cognizant Failure
[Gat91]. The LoCF states that, instead of designing system that never fail, one should
instead design systems that detect failures when they occur. In other words, all system
invariants should be of the form, "The system is guaranteed to either achieve X, or signal
that X has not been achieved." Cognizant failure is useful because it is much simpler to
design systems that are guaranteed to detect failures than systems that are guaranteed to
avoid them. If all failures are cognizant, then the system can be designed to automatically
recover from all failures through layered recovery procedures. At the top-level of the
recovery hierarchy is a more-or-less traditional safe mode, which the spacecraft enters
when all other avenues of recovery have been tried and failed. This recovery of last resort
is exhaustively tested using traditional methods. This approach can guard against both
hardware and software failures, and provide confidence in the overall reliability of the
system even if it contains untested components.

o
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8 Hardware Requirements

8.1 Modelable Behavior

8. 1. 1 “Delta” Commands Restrictions

8. 1. 2 Time

Synchronization

Time Tagging

Commands

Data

8.2 Self Safing

8. 2. 1 Reset to benign, passive state

8. 2. 2 Regular software access necessary to sustain active states

8. 2. 3 Protected access to critical functions

8.3 Fault Protection

8. 3. 1 Internal detections and responses

Built In Tests shouldn’t lie

No ambiguous status

E.g., Rollover
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No unobservable critical faults

8. 3. 2 Containment regions

8. 3. 3 Isolation

Independent access to isolation mechanism

8.4 Redundancy

8. 4. 1 Symmetry

8. 4. 2 Independence

8. 4. 3 Cross Strapping

8.5 Bus and Network Issues

8. 5. 1 Master Selection

8. 5. 2 Masquerading Terminals

o

9 Appendix A — Definitions

9.1 Software Architecture

“The primary objective of architectural design is to develop a modular program
structure and represent the control relationships between modules. In addition,
architectural design melds program structure and data structure, defining interfaces
that enable data to flow throughout the program.”

[Roger S. Pressman, “Software Engineering: A Practitioner’s Approach”, Third
Edition, 1992.]

“Architectural design involves identifying the software components, decoupling and
decomposing them into processing modules and conceptual data structures, and
specifying the interconnections among components.”
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[Richard E. Fairly, “Software Engineering Concepts”, 1985]

9.2 Autonomy

Colloquially, a system is "autonomous" to the extent that it accomplishes tasks that
previously required a human-in-the-loop. For example, a flight/ground system that
automatically diagnoses spacecraft faults is more autonomous in that respect than
one that doesn't. There is no absolute autonomy scale, just relative differences
within functional areas.

The scope of potential new autonomous capabilities is as broad as the range of tasks
currently performed by people. Opportunities exist in sequence planning,
navigation, fault protection, engineering data summarization, science data
processing, and software verification.

Capabilities that make a system more autonomous can exist in ground software as
well as flight software. Some capabilities can be situated in either place, such as
high-level activity planning; others must necessarily be onboard due to reaction-time
constraints (stuck thruster) or limitations of telecommunication data rates (feature
recognition in numerous images).

Architecturally, autonomous "agents" replace human-in-the-loop
calculation/reasoning and must therefore support the necessary interfaces and close
the loops. Given the many different kinds of knowledge and reasoning that humans
bring to problem solving, there is no standard architecture for agents, but two basic
design principles are widely used. First, knowledge about the problem domain is
represented in a declarative form. This inspectable knowledge base describes what
is known, possibly in the form of models or rules or cases. Second, the method for
when and how to apply the knowledge is defined in a [deterministic] inference
procedure. This separation of knowledge and inference procedure yields a readily
inspectable base of knowledge whose clear semantics stem from a formally defined
inference procedure

9.3 Object-Oriented Software

An object is a collection of data items and subroutines that operate on those items.
The data items are known as the object's slots or instance variables, and the
subroutines are known as the object's methods.

An active object is an object with its own thread of control, i.e. an object with a
program counter and a stack or continuation chain included among its instance
variables. Active objects are sometimes called processes (if the object shares no
state with any other object), threads (if the object shares global state with other
threads), or tasks (a term used in vxWorks, where it means the same thing as
thread).

An object class is a description of a set of objects which share common methods
and whose instance variables share a common structure. An object which is a
member of the set described by a class is known as an instance of the class. Some
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programming languages allow the properties of one class to be defined in terms of
the properties of another, a feature known as inheritance. A complex collection of
classes defined in terms of one another is known as a class hierarchy. In some
programming languages, classes are themselves objects, and thus can be instances
of a meta-class, i.e. a class whose instances are other classes.

A first-class object is an object that can be manipulated as a monolithic entity, i.e.
the entire object can be passed as a single argument to or returned as a value from a
method or subroutine. A distributed object is an object whose methods run on
multiple processors, and/or whose slots reside in multiple memory systems.

A program is object-oriented to the extent that any persistent datum in the program
is a member of an object, and that datum is accessed and manipulated exclusively
through that object's methods. In other words, a program is object-oriented when
the set of functions that can operate on any particular data item is explicitly or
implicitly enumerated. Object-orientedness is a continuum, not a discrete property.

Note that it is not necessary to use a so-called "object-oriented" programming language to
write object-oriented programs. Objects, both active and passive, can be constructed in any
programming language, though it may require more effort on the part of the programmer in
some languages than others.

Caveat: It is important to distinguish the general concept of object-oriented design
from any particular instance of an object-oriented design, and to keep in mind that
using object oriented design methods is by itself no guarantee of producing a good
design.

o

10 Appendix B — Examples

10.1 Model Based Software Design

There are two examples that serve to illustrate the idea of model-based software design.

10. 1. 1 Fault Protection Monitoring

 In DS1 program the model for a fault protection monitor is a specification of the data
transformation and filtering to be applied on raw sensor data for the purpose of detecting a
specific fault symptom. The model assumes an architecture where data transformations are
domain-specific mathematical functions (e.g., the Cassini-style phase portrait rotation of
control error and rate of control error), while data filtering operations are either custom-
made or reused from a library of generic data filtering components (e.g., threshold
checking and detection, transaction success/failure tracking, nominal range tracking).

 Fault protection on DS1 relies on one code-generation tool to transform each monitor model
into a suite of products ranging from flight software source code, telemetry packet
definitions, software interface headers, and script-based unit test driver software. The
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specific aspects of the target software architecture are not embedded inside the code
generator but are instead kept into separate models called templates that describe the syntax
and format of each specific product to be generated such as source code.  In this approach,
reusability can be exercised in multiple ways such as: writing new models for building new
monitors, writing new template files to produce different products from each model, adding
new data-filtering components to extend the range of symptom detection techniques, and
adding new modeling constructs to incorporate additional information about purpose and
functionality into the model and to express how this additional information is used in code
generation.

10. 1. 2 Software State Charting

 State charts is a well-known organizing paradigm to describe behavioral information. A
state chart can be seen as being a piece of the model of a software component. In that
context, a state chart software code generator is a model-based tool that can be exploited
towards promoting reuse of information to reduce redundant expressions of the same
model in a variety of forms such as specifications, software implementation, functional
documentation, and test drivers.

 In DS1, statecharting is used to describe the design of data filtering components for
symptom detection in fault protection monitoring. A code generator tool then produces
flight code for each data filtering statechart. This achieves the reuse of information to avoid
unnecessary duplication of effort in terms of design and implementation: the same statechart
fits both purposes.

 Furthermore, the same code generator also produces Java code which is then used along
with a simple Java GUI to make a standalone unit test simulation of the data filtering
statechart. In this manner, the same statechart is reused at the process level not only for
software development purposes but also for software documentation, test and training
purposes.

o

11 NEW MATERIAL NOT YET INCORPORATED
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11.1 Modeling

This is a checklist for hardware modeling. It describes the kinds of information captured in
design models that subsystem vendors must prepare.

---------------------------------------------------------------

11. 1. 1 Introduction (For Vendors)

An autonomous spacecraft has goals. It makes plans to accomplish those goals, it
commands the subsystems to carry out those plans, it monitors the subsystems to confirm
command execution, and when misbehavior is detected it isolates the fault to one (or a few)
candidates and then performs appropriate recovery actions.

The autonomy software that does all of this depends on using knowledge of each
subsystem — knowledge such as its modes of operation, commands, operational
constraints, observable measurements/sensors, kinds of faults, and recovery actions. The
checklist below enumerates the kinds of knowledge that we need from you. Notice that the
level of detail that we want is roughly equivalent to high-level design specifications with
emphasis on the information that flows into and out of the subsystem; a 1-page block
diagram is often the right level of detail for looking inside the subsystem.

11. 1. 2  General

• Please define all acronyms (for the acronym-challenged among us).

11. 1. 3  Architecture, Inputs, Outputs, Design:

• Provide a block diagram where the subsystem is a black box showing:
• Physical information pathways (VME, 1553, 1773, analog, digital, serial, optical,

radio) and where they connect to the rest of the spacecraft;
• Physical relationship of this subsystem w.r.t. the spacecraft frame and other major

subsystems.

• Define all inputs to subsystem:
• Software commands via each bus (VME, 1553, 1773, …);
• Associated command parameters;
• Other signals via non-bus pathways (analog, serial, digital).

• Define all outputs from subsystem:
• Status and data via bus and non-bus pathways;
• Electrical signals via non-bus lines.
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• Describe the design of the subsystem itself through:
• A block diagram showing its sub-subsystems and interconnections for power,

communications, and sensors;
• A brief description of subsystem BEHAVIOR (for commanding, monitoring, and

inferring its state);
• A brief description of subsystem PURPOSE (for modeling its function, evaluating

degraded capability, and planning its usage accordingly).

11. 1. 4  Sensors / Observables:

• What is the rationale for having and placing each sensor?

• Describe the status and data variables that can be read.

• For each sensor/variable:
• How is it read?
• What kind of value does it return: bit, integer, float, state?
• What are its absolute minimum and maximum values?
• What is its nominal range, and does it depend on operating mode or other variables

like temperature, pressure, voltage, etc.?
• How noisy is the returned value?
• What kind of noise filtering or smoothing should be applied?
• How accurate is the sensor at launch? a month later? a year later?
• Is there an independent way to corroborate its value?
• Does it degrade in a predictable way?
• What's the probability of failure?
• When it fails, how is the measured value affected: is it stuck high, stuck low, zero,

erratic, or unchanging?
• If it returns a value outside the nominal range, is there a simple way to distinguish

between sensor fault versus system fault?

11. 1. 5  Monitoring:

• Is there a direct (or indirect) way to confirm that each command is being (or has been)
carried out?

• Is there a way to determine the current operating mode?

• When an autonomic (non-commanded) transition occurs, how is that reported?

• Are there clear boundaries of normal operation?
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• Are there clear signatures of abnormal operation? For example, is there a combination
of sensor readings, possibly observed over time, that signifies a fault?

11. 1. 6  Modes & Transitions:

• Draw a state-transition diagram where:
• Each node represents a high-level operating mode of the subsystem including

startup, shutdown, normal, degraded, and restart modes, as appropriate;
• Each link represents a legal transition from one mode to another.
• What is the initial mode following power-on-reset?
• Which transitions are commanded and which are autonomic?
• Can the subsystem be commanded into a "self-test" or "diagnostic" mode where the

subsystem goes off-line and checks itself for faults?
• Are there modes that should NOT be used?
• If the behavior within a high-level operating mode can best be described with

another state-transition diagram, please provide that.

11. 1. 7  Operational Constraints:

• What constraints exist across all modes (e.g., sun exposure, thermal, power, etc.)?

• For each command, are there situations when it should NOT be issued?

• For each mode, are there commands that should NOT be issued?

• Are there SEQUENCES of commands that should NOT be issued?

• Should certain commands be avoided?

• Should the time in certain modes be minimized?

• For each command, are there any timing constraints?

• Are there preconditions that should be met before certain commands are issued?

• Are there startup and/or shutdown delays for some components?

• Are there components whose respective commands (or states) must be coordinated?

• Are there time constraints on any modes or transitions?
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11. 1. 8  Resource Usage, Environmental Impact, Life Span:

• Quantify nominal resource usage (power, propellant, bus occupancy, SSR memory,
etc.), e.g., "when on, consumes 50W on the 28V bus".

• Describe environmental impact on other subsystems (e.g., dissipates 100W heat,
causes vibration, radiates electromagnetic fields, causes voltage spikes on power bus,
etc.).

• Quantify life span of components in term of allowed operations and environmental
exposures.

• Does execution of certain commands or duration within certain modes:
• Consume significant resources (e.g. power, propellant)?
• Interfere with other subsystems?
• Cause physical degradation?

11. 1. 9  Faults, Failures, Recoveries:

Definitions: A "fault" is a defect in a component of the subsystem; a "failure" is an
observable manifestation of a fault.

• Fault/failure/recovery information can be described in a table whose column headings
are: current mode, observed failure, possible fault, [relative] probability, recovery
action, and next mode.

• For each fault:
• Is there a way to confirm it, possibly by examining several measurements or

observing behavior over time?
• How urgent is it to perform recovery?
• Can it cause consequential faults?

• For each recovery action, what are the undesired consequences, i.e., the effects other
than fixing or bypassing the fault?

• Are there plausible double-faults that should be considered?

• Does the subsystem ever initiate AUTOMATIC fault recovery? If so, how can it be
determined that that is happening?

11. 1. 10  External / Exogenous Events:

• What are the exogenous events that affect this subsystem? Include external stimuli,
time-outs, and faults.
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11. 1. 11  Complexity / Cost Estimates:

It could be useful to provide estimates of complexity or cost for a particular sensor or
functionality. There may be opportunities for subsystem designers to reduce costs by
taking advantage of the relatively sophisticated system-wide monitoring, diagnosis, and
recovery software provided by full autonomy. For example, if a subsystem contains a
costly sensor for measuring a value that the software can infer by other means, then system
engineers may elect to eliminate the sensor.
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11.2 Architecture

11. 2. 1 Introduction

11. 2. 2 Document Objectives

11. 2. 3 Design Guidelines

11. 2. 4 An Approach to Layered Design

11. 2. 5 The Software Design

 Summarized Architecture Guidelines

In order to ensure that the X2000 architecture covers all of the architecture guidelines, the
guidelines are enumerated below. Also included is the chapter, section and subsection
number of the previous chapters from which the guideline was surmised:

 [Enumerated list of s/w design guidelines]

 In the following sections we prescribe a common basis for the X2000 architecture so as to
satisfy the architecture guidelines. Throughout we specify which of the design guidelines
the prescribed architectural component impacts using the above enumerated list with the
notion '{<guideline>}'. In this way it will be clear that the guidelines are thoroughly
addressed by the architecture. That is not a guarantee that the subsequent spacecraft
software design and implementation will embody the design guidelines. Although, without
a suitable architecture, the spacecraft software could at best only coincidentally satisfy the
guidelines.

 The Object-Oriented Approach

The object-oriented approach has emerged as the dominant approach to the software
engineering of large, complex, mission-critical software applications. [... ]

The 'object' in object-oriented is the software model for a physical or conceptual 'external
object'. The software object is often confused with the external object that is models. This
is desirous because it is an indication that the software model has 'covered' the external
object accurately. Any disparity between the two objects warrants concern.

Like external objects, objects have identity, state and behavior. [...]

A spacecraft is a physical object that is amenable to modeling as a software object.
Spacecraft have identity like 'the Cassini spacecraft'. Spacecraft have state like mass, cost,
subsystems and life expectancy. Spacecraft have behaviors to turn, to navigate, to return
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science data, and to shutdown. Spacecraft are certainly large (if not physically,
programatically), complex and mission critical.

A spacecraft is the pinnacle in a abstraction hierarchy that extends down to the bits in a
memory location, the amp-hours in a battery, the Kelvins in a catbed heater, and the grams
in a fuel tank.

 Conceptual Framework

Basic concepts provide a basis for communication on software architecture issues. In what
follows we quote definitions [Booch94] for several concepts that are generally important in
software engineering and that are often the focus in an object-oriented design process.
Descriptions can be found in various references; descriptions on their applicability to
spacecraft is current lacking, herein.

Abstraction: "An abstraction denotes the essential characteristics of an object that
distinguish it from all other kinds of objects and thus provide crisply defined conceptual
boundaries, relative to the perspective of the viewer."

Encapsulation: "Encapsulation is the process of compartmentalizing the elements of an
abstraction that constitute its structure and behavior; encapsulation serves to separate the
contractual interface of an abstraction and its implementation"

Modularity: "Modularity is the property of a system that has been decomposed into a set of
cohesive and loosely coupled modules."

Hierarchy: "Hierarchy is a ranking or ordering of abstractions"

Typing: "Typing is the enforcement of the class of an object, such that objects of different
types may not be interchanged, or at the most, they may be interchanged only in very
restricted ways."

Concurrency: "Concurrency is the property that distinguishes an active object from one that
is not active"

Persistence: "Persistence is the property of an object through which its existence transcends
time (i.e. the object continues to exist after its creator ceases to exist) and/or space (i.e. the
object's location moves from the address space in which it was created)."

 Modeling

Models in an object-oriented approach are derived from the vocabulary of the domain for
which the software is employed. This is after all one of the significant advantages of object-
orientation in that it provides a common vocabulary for software developers, domain
experts and users. Given a common vocabulary miscommunication is less likely; one
impact is likely a reduction of errors in the software product.

Using model-based design for spacecraft software will, for the first time, provide an
accessible, uniform vocabulary for discourse between disparate divisions. The vocabulary
is grounded upon the entities and activities in spacecraft and of space, exploration and
science. The models thus reflect the core capability of JPL.



X2000 Software Architecture Definition 5/12/97

83

High-level models are inherently free from obsolescence because they are based on the
physical and conceptual world, that is the domain. Thus, if it is appropriate to model a
spacecraft as having attitude control, navigation and camera subsystems today it is highly
likely that, short of a technological revolution, spacecraft will still have the same
subsystems twenty-five years from now. This is not to say that the specifics (read,
implementation) of navigation, for example, will be unchanged during that interval. It is
expected that implementations change but the interface, captured by the model, likely will
not.

Lower-level model will naturally reach obsolescence. In particular, hardware specific
device models invariably change as technology progresses and even more frequently as
versions change. An example might be new imaging technology leading to more accurate
star trackers. However, the model just above the hardware specific model, say the generic
'star tracker' model, likely need not change because, say, the fundamentals of tracking
stars are fundamental.

Given good models, the stability of the domain is reflected in the stability of the software
models.

 Modeling Languages

Software models must be expressed in a software modeling language. To be useful the
modeling language must be: 1) expressive enough to capture the domain, 2) precise enough
to reduce ambiguity in expression, 3) process independent, and 4) understood by all team
members. These characteristics enable a modeling language as an effective tool.

The "Unified Modeling Language" (UML) is a consolidation of several modeling
languages. Each of the modeling languages: Booch (Booch), OMT (Rumbaugh), and
OOSE (Jacobson) had certain strengths and weaknesses and had been adopted by large
numbers of developers in the object-oriented software community. UML builds on their
successes.

From the UML v1.0 Summary document - the unification effort established four goals: "1)
to model systems (and not just software) using object-oriented systems, 2) to
establish an explicit coupling to conceptual as well as executable artifacts, 3) to address
the issues of scale inherent in complex, mission-critical systems, and 4) to create a
modeling language usable by both humans and machines." The UML does not address
issues in the software development process; although the UML authors promote a process
that is "use-case, architecture centric and iterative and incremental."

The UML modeling language ought to be adopted by X2000 as the standard modeling
language.

Having a standard modeling language does not prevent use of specialized languages.
Standardization simply provides a basis for communication Yet, within different teams or
technologies, other modeling languages might be required. Two examples are the model
languages used by the DS1 PS and the DS1 MIR teams. Still, ideally one language fits all
although not without certain hardship. Multiple languages reduce readability and increases
specialization at the expense of shared experience.

Amongst different tools, choosing one that is standardized and proven can reduce risks.
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Architecture

Software architectures consist of both logical and physical views [Booch94]. The logical
view of a system "serves to describe the existence and meaning of the key abstraction and
mechanisms that form the problem space" while the physical view of a system "describes
the concrete software and hardware composition of the system's context or implementation.
Both views have both static and dynamic components.

In the object-oriented domain the logical view is comprised of the classes, the class
relationships, the objects, and the mechanisms of collaboration between the objects. The
physical view is a specification of where the classes and objects are declared, what
processors and devices exists, how are the processes allocated between processors and
what scheduling mechanisms are employed.

The physical processors and devices do not as a rule appear in the logical view. For
example, in a user interface with a class such as <window>, the processor upon which the
<window> is displayed would not be modeled explicitly (provided active and passive
objects existed explicitly - see the definitions below). However, in a robotics application,
like spacecraft, where resources are constrained and interaction with the environment is
paramount it is perhaps a necessity to model the processor itself (say for mass, thermal,
and memory properties). In these cases, caution must be observed to maintain the
distinction between logical and physical views.

Relation to 'Ground'

Although it is rather premature within this document to discuss 'ground' and 'ground
software', there is one important point to be made in light of the architectural divisions of
physical and logical views. In a physical view a 'spacecraft' consists of one or more
processors on-board and one or more processors off-board, on the ground. The physical
view will have two large boxes one labeled 'flight' and the other labeled 'ground.' In the
logical view flight software and ground software are both spacecraft software and what
functionality is where is thus largely irrelevant. The logical view will not have any box
labeled 'ground' but instead might have boxes labeled 'debugger' or 'database' or
'display.' The distinction between physical and logical views is an empowering one and
leads naturally to the unification of flight and ground software.

 Definitions

The following definitions are from the 'Unified Modeling Language' or from Booch94
("Object-Oriented Analysis and Design with Applications"):

 General

 [... specific relevance ...]

 OBJECT: An entity with a well-defined boundary and identity that encapsulates state and
behavior. State is represented by attributes and relationships, behavior is represented by
operations and methods. An object is an instance of a class.

 CLASS: A description of a set of objects that share the same attributes, operations,
methods, relationships, and semantics. A class is an implementation of a type.
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 METHOD: The implementation of an operation ('a service to effect behavior'). The
algorithm or procedure that effects the results of an operation.

 GENERIC/VIRTUAL FUNCTION: An operation upon an object. [...] implemented
through a set of methods declared in various classes related via their inheritance hierarchy

 MESSAGE: An operation that one object performs upon another. The terms 'message, '
'method,' and 'operation' are usually interchangeable [In what follows, we avoid
'message' in favor of 'method']

 EXCEPTION: An indication that some invariant has not or cannot be satisfied.

 CLIENT: An object that uses the services of another object, either by operating upon it or
by referencing its state.

 SERVER: An object that never operates upon other objects, but is only operated upon by
other objects; an object that provides certain services.

 Concurrency

 [... specific relevance ...]

 THREAD-OF-CONTROL: A single process. The start of a thread of control is the root
from which independent dynamic action within a system occurs; a given system may have
many simultaneous threads of control, some of which may dynamically come into existence
and then cease to exist. Systems executing across multiple CPUs allow for truly concurrent
threads of control, whereas systems running on a single CPU can only achieve the illusion
of concurrent threads of control.

 ACTIVE OBJECT: An object that encompasses its own thread of control.

 PASSIVE OBJECT: An object that does not encompass its own thread of control.

 SEQUENTIAL OBJECT: A passive object whose semantics are guaranteed only in the
presence of a single thread of control.

 BLOCKING OBJECT: A passive object whose semantics are guaranteed in the presence
of multiple threads of control. Invoking an operation of a blocking object blocks the client
for the duration of the operation.

 CONCURRENT OBJECT: An active object whose semantics are guaranteed in the
presence of multiple threads of control.

 SYNCHRONIZATION

 [... specific relevance ...]

 SYNCHRONIZATION: The concurrency semantics of an operation. An operation may be:

 SIMPLE: only one thread of control is involved.
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 SYNCHRONOUS: An operation commences only when the sender has initiated the
action and the receiver is ready to accept the method. The sender and receiver will wait
indefinitely until both parties are ready to proceed.

 TIMEOUT: The same as synchronous except that the sender will only wait for a
specified amount of time for the receiver to be ready.

 BALKING: The same as synchronous except that the sender will abandon the operation if
the receiver is not immediately ready. The same as timeout with a time of zero.

 ASYNCHRONOUS: A sender may initiate an action regardless of whether the receiver is
expecting the method.

 Cautions

Within JPL is often observed that the holy grail of flight software architecture is the
specification of a message passing paradigm for a uniform communication interface
between all software modules (including ground as well). This observation belies a
misunderstanding of the role of message passing in a software architecture and more
importantly the different communication requirements in the hierarchy of flight software
functionality.

 1) Message passing is a specific implementation of inter-object communication. There is
never a need to elevate any one implementation to the level of interface as that unnecessarily
constrains the interface.

 2) Closing control-loops occurs at many temporal levels with each level imposing a
different performance requirement on the inter-object communication (memory use, speed,
reliability, etc.

Specifically, in terms of the prior definitions, a message queue is one of several
implementations for a asynchronous method between two active objects. It is nothing more
than that which leaves elevation of message passing to the interface as an undo constraint of
the inter-object communication mechanism.

Object-oriented development is more than just knowing C++, Java or CLOS. It is a
discipline in itself for which not many people are adequately trained. In spite of the large
software engineering component within the JPL workforce is probably safe to say that JPL
faces a critical shortage of properly trained software engineers. Given that flight projects
have traditionally been hardware-centric, the shortage is particularly acute.

A Spacecraft is a complex beast and it is not likely to fit neatly into one paradigm. Different
views, approaches and implementations are required under different situations and times. It
is inappropriate to place arbitrary restrictions on a design because of some desire to fit into
a particular paradigm. The best that can be hoped for is that ones tools are general and
expressive enough to capture the domain and that ones design expresses enough
encapsulation to allow 'arbitrary' implementation.

 Design Space

The X2000 s/w architecture's logical view is conceptually a multi-dimensional 'design
space.' Each axis in the design space represents a largely independent aspect of the s/w
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design. The coordinate along any single axis is specified appropriately for that particular
axis. Because the design space is for the architecture's logical view, the space deals solely
with software models. Thus physical view concepts, such as of processors or devices, are
not represented in the design space.

The independence allows One or two aspects often

The axis are: functionality, faults, hardware, simulation and mission; each is discussed
below

 Functionality

The primary axis in the X2000 design space is the 'functionality' axis. This axis models the
hierarchy of software functionality without consideration of hardware, simulation, mission
requirements or even faults. As such, the axis models the ideal, generic spacecraft upon
which spacecraft systems engineers, mission planners and science working groups base
their analysis upon. Thus, an implementation of this axis alone should be useful as a tool
for these three groups.

In spite of its simplicity, the functionality axis captures much of that is important in
spacecraft software.

Along this axis are four coordinates each of which is described subsequently.

Drivers: The origin on the functionality axis is comprised of 'drivers' which are the
software models for generic hardware devices. Examples of drivers include: valve, sensor,
switch, battery, heater, waveguide, antenna, gimbal, bus, gyroscope, solar panel, lens,
camera and engine. This drivers coordinate is itself also hierarchical: engines might be
composed of valves, nozzles, fuel tanks and propellant; cameras might be composed of
lenses, imagers and film; solar panels might be composed of wires, ribs, current sensors,
actuators and amorphous silicon chip arrays. As models of generic devices, drivers will not
generally be detailed to the level of 'bits in a control word' or 'remote terminal number on a
1553 bus' or 'memory-mapped, off-board VME memory.' Such details are
implementation, not interface.

Drivers need not correspond to a physical device even though drivers, as defined above,
model generic hardware. That is, drivers can correspond to virtual hardware thereby
allowing the hardware behavior to be implemented in software. This is of great utility
when, for example, a hardware device has failed but there is redundant information that
allows the hardware to be simulated. Or when mass constraints dictate that a particular
sensor cannot fly but that sensor's reading can be inferred from other spacecraft
observations.

Having a drivers coordinate on the functionality axis in itself is a wonderful advance for
future JPL missions. In pre-X2000 flight software architectures, the drivers were what
attitude control systems (ACS) and ground-based sequencers commanded. And, the drivers
directly mapped to a physical device and thus directly manipulated bits and bus addresses
and memory maps. In these early architectures there was little of a generic interface and
even less reuse. The core competency of JPL is in spacecraft systems and the software was
reinvented time after time.
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[Class of 'drivers' that are resources - each hardware device is obviously a precious
resource as is power, etc.]

Commanders: Next up on the functionality axis are 'commanders' of the drivers. Examples
are: reaction control, attitude knowledge, attitude control, time-based, open-loop
sequencers, navigation and science.

Prior to DS1 {footnote-1 Prior to DS1 and subsequent to the demise of the DS1 'Remote
Agent' - that is, aside from the short one year of on-board, high-level spacecraft
autonomy.} the commanders level was the highest level within spacecraft flight software.
Actually, the commanders level and examples described above is even slightly higher then
tradition spacecraft because the navigation and science subsystems did not command.
Whereas, in this X2000 design they do potentially (subject to a full-up analysis phase in the
software development).

Configurers: The third level on the functionality axis are 'configurers' which reconfigure
commanders to avoid resource constraints. Examples of configurers are: power and thermal
subsystems. Configurers essentially dole our resources needed by commanders and might
have limited reasoning capability to optimally, though locally, configure the resources.

[Commanders manage devices, Configurers manage resources?]

Automates: The highest level on the functionality axis are 'automates' which comprise the
autonomy subsystems that close the commanding and configuration control-loops at the
highest level. Examples are: planners/schedulers, mode identification and reconfiguration
systems, etc. Like any software module described up to now, there is no distinction as to
what is on-board, on-board in a companion processor, on another spacecraft or on the
ground because the design space exists in the logical view, not the physical view. Of
course, because 'automates' operate at the highest-level which is often (but not necessarily)
the level with the lowest temporal completion constraints, it is possible for the 'automates'
to be off-board.

Any given mission includes all of these functionality levels.

 Hardware

The 'Hardware' axis has binary coordinates of 'present' and 'absent'; it is thus not quasi-
continuous as is the functionality axis. The hardware axis embodies software models of
physical-view devices; this is not to be confused with the hardware itself although the
software models will be generally as close to the hardware as possible. Examples are
software models for: SpectrumAstro Solar Electric Propulsion (SEP) Engine, DTI 1553
VME card, CT-401 Fixed-Head Star-Tracker, JPL General Purpose Board (GPB), etc.

The software models of hardware devices serve to implement the interfaces defined on the
functionality axis. Several hardware devices might be required to implement a particular
functionality model and a particular hardware device might implement several functionality
models. This is a many-to-many relationship.

For a given mission, as hardware components are added, the software structure tends to be
'mirrored' about the functionality/hardware axis because the abstract functional models map
to the hardware devices. This is not at all wasteful because, in brief, the functional models
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are completely reusable and given the expected stability, the functional models can drive the
standardization of spacecraft hardware. This point is revisited in depth later.

The 'Functionality-Hardware' plane is where the hardware people live. In particular, the
'drivers' coordinate on the functionality axis and the 'present' coordinate on the hardware
axis is where hardware ought to live. 'Ought to live' because the drivers coordinate
provides the idealized software model that hardware developers could strive for. This is
thus unlike the 'present' hardware coordinate itself - wherein hardware developers produce
software models that are drastically different from mission to mission. Prior to X2000, JPL
mission find themselves in this second situation - an costly situation.

 Faults

The 'faults' axis represents the departure from idealized software modules in terms of
exceptions and includes recoveries in terms of exception handling. Like the 'hardware'
axis, this axis has binary coordinates of 'present' and 'absent'. Examples of exceptions and
exception handlers are: switch-stuck-off with handlers of switch-off, switch-on and warm-
then-switch-on, etc.; image-buffer-full with handlers of discard-buffer, discard-image,
flush-buffer/save-image, etc.; and others.

The 'functionality-faults' plane represents how spacecraft system engineers think abstractly
about spacecraft - devoid of hardware, simulation and mission specifics. This plane has
software models for everything that is generic about spacecraft systems - perhaps it
embodies the content of a first coarse on spacecraft systems engineering. The plane is truly
core-JPL and core-spacecraft engineering.

The 'functionality-faults-hardware' space represents the flight software; it is traditionally
what flies on a particular mission. Note that this ignores the role of simulation software as
flight software to backup failed hardware; this role is important but, perhaps aside from
Cassini AACS, not employed often enough to increase spacecraft robustness.

 Simulation

The 'Simulation' axis has quasi-continuous coordinates representing degree-of-simulation
or fidelity. The zero coordinate on this axis has no simulation component. Any software
module in the design space can be simulated and it is important to note that simulation
should not be limited to hardware (and the environment).

The 'simulation-hardware' plane is where spacecraft hardware simulation generally takes
place. The simulator interface is exactly as specified by the software model for the
hardware device. The simulation often is performed remotely from the flight CPU because
hardware devices are themselves located remotely and connected to the flight CPU via
buses, like the 1553.

Simulation of the 'functionality-faults' plans at the 'drivers' coordinate plays an important
role the software development process. Such a simulation is of the generic, lowest-level
drivers - it allows all higher functionality to be developed and tested independently of
specific hardware. When hardware becomes present, the software model for the hardware
need only be used to implement the generic interface and then, once the generic interface is
thoroughly tested with the hardware, the overall software is functional and tested.

 Mission
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The 'Mission' axis has coordinates representing each mission. For example: X2000,
X2002, X2004, etc. In a sense, this is the single most important axis to ensure NASA's
'smaller, better, cheaper' mandate. This axis allows one to track, from mission to mission,
the re-usability of the software.

If the software design is done well, the development for any particular mission ought to
follow roughly the following course:

 1) Select from a large number of predefined, implemented and tested software and
hardware components (for example: switches, batteries, star trackers, etc.).

 2) Commission new software modules for the new hardware devices (for example: the
DS1 ion-propulsion-systems, a whiz-bang super-hi-resolution camera).

 3) Extend existing higher-level functionality models has new technology is developed (for
example: an improved planning engine, a computationally less intensive on-board
navigation algorithm, or a new fuel-conserving RCS control mode).

 4) Statically configure the selection of hardware and software components. The
configuration includes component connectivity, mass, orientation, etc.

The selection of components is performed by spacecraft systems engineers in response to
requirements specified by mission planners. The new software modules and the extending
of existing models is designed and implemented by software engineers in consultation with
domain experts. New technologies are developed and implemented by technology experts,
generally prior to but often commissioned by a particular mission.

 Development Approach

Given the flight software design space and the design guidelines detailed in the prior
chapters, we are prepared to enumerate specific development approaches to ensure that the
software requirements are met. We highlight six approaches: modularity, configurability,
visibility, commandability, asynchronousity and dynamism. Each of these impacts one or
more design guidelines and follows from the nature of spacecraft and their environment.

 Modularity

Nothing has a bigger impact on a software development process than modularity.

[Impact on design, implementation, integration, testability and re-usability]

 The 'Slice Model'

The 'Slice Model' in software design is the anti-thesis of a modular software design. The
slice model was employed (and invented) out of necessity on DS1. Its need arose because
of the view that autonomy experts in reactive, deliberative and reasoning systems needed to
focus on their autonomy technology. Consequently flight software teams were composed
based on technological expertise rather than based on modular 'domain units.' Without
domain units there was no formal process by which to ensure that a particular domain was
covered functionality. The result was, for example, perfectly functioning autonomy
subsystems and no guarantee that the camera or propulsions system would function in
closed-loop, top-to-bottom.
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The 'slice model' has a horrible impact on integration. Each technology had a 'slice' of a
particular domain unit, say the camera subsystem, along with 'slices' from telemetry, real-
time and other components. Some of the components are of very high level (say at the level
of mission goals) and some of the components are at a very low level (say at the level of
flipping bits in a device driver). A functioning domain unit requires a small piece of each
component - those pieces get merged during integration and thus only at the completion of
integration will a domain unit even function for the first time. This integration process is
actually what development should be; integration ought to be between domain units.

Although this problem was identified during the DS1 process, its impact throughout the
development was vastly underestimated.

 Impact of Autonomy

Autonomy has a significant impact on modularity. The impact arises because autonomy
systems tend to employ a global view whereas modularity demands a local view. For
example, model-based-reasoning systems for fault protection use inputs from numerous,
isolated sensors, models of spacecraft and environment, and inference engines to infer
some aspects of the spacecraft's state. By its global nature, autonomy poses a threat to
modularity.

Modularity places significant requirements on autonomy. Autonomous systems can not be
designed to usurp modularity even if it is at the expense of autonomy. Modularity is simple
too important of a design principle to be abandoned for a relatively small (but admittedly
important) goal of autonomy. This places the burden of conformance on the developers of
autonomy.

The key to achieving modularity in light of autonomy is to split the autonomous system into
several parts: a low level part that contains models and data; a high-level part with
configurability, commandability, goals and global models; and a skew level with the
inferencing engine. The low and high level parts populate the inferencing engine with
models and thus the inferencing engine is functionally below both parts.

One specific example is that of 'inferred sensors.' An inferred sensor is a subclass of
'virtual sensor' (non-physical sensor) and thus of 'sensor' itself. Like every sensor an
inferred sensor is an active object that asynchronously reports changes in the value of
whatever the sensor purports to measure. These properties obviously make an inferred
sensor indistinguishable from a sensor and thus plug compatible replacements for physical
sensors. Any client of a sensor need not be concerned with from where or how the
sensor's value is determined and thus 'inferred sensors' allowed the desired level of
modularity.

Inferred sensors derive their state from global inferences performed over the entire
spacecraft state (past and present) and based on the models resident in the inferencing
engine. The effect is as desired: global inferencing provides an accurate value. The
modularity is as required: no client need know the sensor's implementation. The
implication is enormous.

 Configurability

Like any fault tolerant, resource constrained system, spacecraft require unprecedented
levels of configurability. (This precedence is based on the generally low levels of
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configurability exhibited on spacecraft outside of ground-based intervention and attitude
control systems.) Because of modularity requirements, the configurability must be
provided locally, on a module-by-module basis. Three general areas of configurability are
considered: fault protection, resources and structure.

 Fault Protection

Configurability in fault protection allows for different exception handlers to be employed in
response to an exception. The choice of an appropriate handler is generally based on many,
many factors some of which are local, others of which are global, all of which vary in time.
Configurability implies that a particular exception handler need not be statically chosen at
design time but can be installed as desired.

Exceptions and exception handlers are defined locally. The exceptions are defined locally
because only the module can know what exceptions are appropriate and from which
exceptions the module cannot guarantee local recovery. The exception handlers are defined
locally because only the module can know the context in which the exceptions happen and
what actions are needed to recover. Note that handling an exception need not imply
continuing from the exception but can instead imply aborting the computation and waiting
for higher level aid. It is expected that a single exception might have many handlers; all the
exceptions and their handlers are developed, tested and delivered as one.

Configurability in fault protection increases the robustness of spacecraft. Where appropriate
exceptions get handled at the lowest possible level and allow activities to proceed in the face
of uncertain conditions. Obviously, for some exceptions, it is not appropriate to handle the
fault locally. Expect those exceptions to have an 'unable-to-handle' exception handler.

 Resources

Configurability of resources allows for different methods of resource allocation to be
employed in response to a resource request. Like exception handlers, resources can be
allocated based on local or global considerations. Different allocation schemes might be
appropriate at different times. Configurability implies that that basis for allocation need not
be statically chosen.

Resources themselves have a multiplicity that influences the allocation basis. Some
resources might be 'single' (a camera), or 'multiple' (disk files) or 'continuous' (power). It
is usually apparent from the 'units' used in describing the resource which multiplicity it
demands. For example: 'the camera,' 'a file' and 'watts'.

It is useful to think of resources as having a resource manager which serves as the broker
for resource requests. A common example of a manager is a computer's 'memory manager'
which maintains the memory subsystem by recording memory in use, free memory,
available memory and which takes requests (via 'malloc()') for allocation of memory.
Memory itself is a 'multiple' resource in which sharing of an individual unit may or may
not be allowed.

Resource allocation can be of many types. The most common is for the resource to be used
exclusively at the discretion of the resource user. There are other types: none, whereby any
and all sharing is allowed; negotiated by, say, priority; or planned on a device and temporal
basis. All these types have a place in spacecraft resource allocation.
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 Structure

Configurability of structure allows for different components to be employed in response to
different requirements, faults or resource limitations. Examples are: replace a faulty
physical gyroscope with an inferred sensor of precession; swap batteries on a cell failure;
during encounter use a reaction control algorithm providing greater spacecraft stability at a
cost of greater propellant use; use switch 'x' when requesting a power resource.

It should be noted that this level of structural configurability can be over-used by making
everything modifiable. Such overuse is important to avoid because a clear definition of the
static properties of spacecraft software has a tremendous impact on the design and ultimate
performance of the software system.

 Visibility

There is an inherent design tension between visibility and encapsulation. Design for
encapsulation reduces interfaces by making as much as possible be an implementation
issues; design for visibility expands interfaces by making more and more accessibly
through the interface. Encapsulation is important as a general design principle; visibility is
important when autonomy is involved.

Autonomous systems often have a deliberative component which bases decisions on
models installed in an inferencing component. The models come from somewhere and that
place needs to be the software model itself. That is, where possible and to the extent
possible the software model must provide access to the information needed by the
autonomous system. Providing access implies that the information must be both present
and accessible. Keeping the information in the software model supports modularity.

One example of visibility is the requirement to have explicit, detailed state transition
diagrams. State transition diagrams are an expression of the dynamic progression of a
model; they are particularly important in engineered, real-time systems. Both nominal and
fault behaviors are expressed in state transition diagrams.

Visibility to state transition diagrams provides, in large degree, the static models needed by
autonomous systems for planning and fault protection. Planning concepts such as: timeline,
state token, and action token map nicely to: active object, state and event. Similarly for fault
protection where the sub-portion of a state transition diagram related to faults could
populate the autonomy models.

Another visibility example is the need for power tables by flight software. Power tables are
traditionally a design issue in which the power used by components and under what
conditions is published in a tabular form. The table is used by ground sequencers to ensure
that the power budget during a mission phase is not exceeded. The natural place for the
power information is with the software model for the device which uses the power. The
information needs to be used by the device when requesting power; it must be visible so
that deliberative components can reason about the power demanded for a certain global
activity.

 Commandability

[nothing yet. What was I thinking. Callbacks?]
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 Asynchronousity

Spacecraft, by their nature and in spite of our best engineering efforts, are event-based,
asynchronous systems. Faults occur and those faults are always asynchronous. Sensor
states change based on actuation and those changes are asynchronous owing to various
sources of indeterminacy. The environment is unpredictably rife with interesting scientific
events like volcanic explosions and those events are always asynchronous.

Software modeling of this asynchronousity requires that the software be event-based,
multiprocessing with a preemptive scheduler. Event-based ensures that external events map
accurately into software events. Multiprocessing is a requirement because events arise
independently and simultaneously from different sources. Preemptive scheduling
acknowledges that some events are more important than others and that there cannot be one
processor for each source of events.

Use of event-based, multiprocessing does not preclude time-based sequencing or periodic
sampling implementations. The progression of time is itself an event, albeit a
programmable one, in which a desired timing or periodicity is fully specifiable.

The distinction between multiprocessor and multiprocessing, preemptive scheduling is an
implementation detail and ought not to influence the software design.

 Dynamism

Spacecraft exist in a dynamic environment and are expected to perform different activities,
derived from high-level goals, at different times. Examples of activities are launch detumble
and checkout, thrusting cruise and encounter.

Software modeling of this dynamism requires that the software requirements not impose a
priori limitations on the computational resources allocated to any particular module.
Obviously computational resources are resources and need to be modeled as such and
subject to the same requirements as other resources. However, attempts to preallocate
memory or file space on a per module basis or to limit the number of processes/tasks
runnable throughout a mission or to restrict the CPU available to a particular active object
are largely unjustified. Doing such ignores well established technologies such as real-time,
incremental garbage collectors and multiprocessor load-balancing algorithms for example.

 Development Environment

Like the development approach, the development environment plays a major role to ensure
that the software requirements are met in a timely and cost effective manner.

 Project Database

The project needs a single, centralized, project controlled database. The database is to
contain anything and everything related to the project. This ought to include, minimally: 1)
Project Requirements and Finances 2) Staff and Organization Charts 3) Mission Design 4)
Hardware Design 5) Software Design, Environment and Implementation 6)
Documentation, WEB and otherwise 7) Science and Engineering Data Results. The
database and the hardware on which it runs become the legacy of the project. All future
access to the science data should be accessible via the database (but not to exclude other
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distribution media like CDROMS). The WEB pages (public and private) exist for all time.
The tools used for development and testing exist for all time. The monthly schedules and
cost estimates and progress reports and up-scope analyses exist for all time.

The project database appears in direct opposition to the entrenched processes. A project
passes through the PDC, the Design Hub, the FST and the Ground data systems and along
the way leaves a bit of itself in each of the waypoints. These waypoints have a sense of
control; but none of consultations nor delivery. This entrenched process is inverted. The
waypoints need to deliver tools and expertise and documentation to the project and they
need to interface their databases with the projects database.

These waypoints are like eat-in-only restaurants: you come in, you eat and leave; you've
got a memory, perhaps a buzz, perhaps heartburn; there are no doggy-bags, no take out, no
delivery.

A project database is a first step towards a paper-less design. If hardware CAD/CAM
systems eventually are integrated with the database, then that would be one large step
towards ensuring that hardware and software models are synchronized and that data needed
for the required software model visibility is accurate.

 Uniform, Stable Tools

The reality of software development is that developers work in remote locations, on distinct
networks and files systems, to different daily time schedules and with different
backgrounds. Add to this mix a project with multiple hardware target platforms and
software tools distinct at all locations and prone to unannounced version update and you
have a disaster. A disaster not unlike others of recent note.

One requirement for the development is that it be uniform across all machines routinely
used for development, have a minimal set of target platforms (ideally a single platform) and
be unchanged beyond month one. This is not an ideal situation; this is the definition of an
environment (albeit a static one). If a project finds that time is spent, beyond month one, on
compilers and version control systems and file system organizations then that spacecraft
project is doing development outside of core NASA and JPL competency.

The apparent hardware platform of choice for spacecraft appears to be VME cages with
multiple single-board-computers each running VxWorks. This choice is well beyond the
previous state of having a custom operating system (OS) on a mission-by-mission basis
and beyond the promises of some future OS that will unify the universe. If VME CPUs
running VxWorks is the flight configuration (and if JPL's core competency is spacecraft)
then the use of VxWorks boxes ought to be promulgated loudly and widely.

Note that the software architecture presented in this document makes clear the distinction
between logical view and physical view. The selection of a processor and OS belongs to
the physical view and is thus a relatively minor component in a spacecraft software
architecture.

[Software specifics]

Having uniform, stable tools is an important prerequisite to having developers work with
one mind-set and share one experience. As the number of platforms and software tools
increases so does the ability of any one person to fathom all the details of each platform.
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The result is subgroups of developers that know a lot about a few things and a little about
other things. The lose of one group jeopardizes the entire project - in the extreme the lose of
a single individual can sink the project.

The value of a shared development experience and its facilitation by limiting the hardware
and software options cannot be under-emphasized.

 Development Process

[More on specific phases... at least:  requirements, analysis, design, implement, test]

The development process puts the software design and development together into a
manageable entity. With the process come the generic milestones, the staffing requirements
in number and expertise, the documentation framework, the organization chart, etc.

 Language Independent

It is important that the process be suitable for different software implementation languages.
Specialization up front on C++ or Java or CLOS is an indication that the modeling phase is
not accurately modeling the domain because obviously the spacecraft domain is
independent of the implementation language.

The implementation language even need not be properly object-oriented. Clearly spacecraft
have design requirements and platform constraints within which object-oriented languages
might not fit. Again, modeling is what is important, not the implementation language.

 Iterative, Incremental

The development process needs to be iterative and incremental (see "Developing Object-
Oriented Software..." (DOOS)). Such a process is 'incremental by requirements' in that
each increment provides additional functionality to satisfy the customer's requirements.
And 'iterative' in that each increment includes some rework. Such a 'strongly incremental'
process is appropriate when: 1) requirements are uncertain and complete, 2) technologies
are use with which the development are unfamiliar, and 3) project is complex. Again, see
DOOS for the above as one example.

The process needs to be understood by all developers and all developers must sign on the
process. Any group that, during the development process, concludes that the process is
inappropriate for them needs to be reconstructed or replaced. The middle of a process is not
the appropriate time to debate the process.

 Team Composition

Software development needs to be performed by software development experts; not by
people knowledgeable in spacecraft technologies. Such development experts will be
comfortable with an object-oriented, incremental, iterative development process, with
designs based on reuse, modularity and encapsulation and with the value of a stable
uniform development environment.

Ideally the spacecraft technologists would have the expertise in software development but it
is unreasonable to expect that a-priori. After all, 'NAV' people need to be knowledgeable
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about stellar image processing and triangulation and 'ACS' people need to know about
control theory. Without the expertise in software development, the appropriate role for a
technologies is as a 'domain expert' with important roles in the software analysis and
design phases of the software development process.

 Conclusions

[ Summarize link between 'design guidelines' and responses. ]

11. 2. 6  Functionality

11. 2. 7  Verification (and Testing)

11. 2. 8  Implication for Hardware Architecture

11. 2. 9  Project Issues

11. 2. 10  Conclusions
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11.3 Plug-and-Play Architecture

[This is two separate submittals. No attempt has been made yet to merge them.]

11. 3. 1 Human organization

Software development is a human endeavor, and it is important to recognize that the
information flow among the humans writing the software may or may not reflect the
structure of the information flow among the components of the software. Ensuring that
information flows properly between the software developers is at least as important as
ensuring the same for the software components, and perhaps more so because human
communications channels are noisy and bandwidth-limited. The design of the software
team should be an integral part of the design of the software structure.

For example, consider the software needed to control a device. This software can be
written by the person or team that designed the device, but this team is likely to have more
training and experience in designing devices than programming. Alternatively the software
can be written by a trained programmer who is not initially familiar with the operation of
the device. It would be advantageous if the software can be structured in such a way that
the device designer can write the device-specific software with less effort than it would take
to transfer the required knowledge to a programmer.

Realizing the vision of a completely plug-and-play architecture where device designers
write the code for their devices, scientists write the code to control their experiments,
spacecraft designers write down the flight rules for the spacecraft, and everything comes
together automatically, requires some radical rethinking about what it means to write
software. It is almost certainly the case that to realize this vision will require languages
capable of expressing the kinds of information that humans exchange when designing
software systems, including models, priorities, intentions, and reasons, not just
procedures. This is a very long-term vision. In the meantime, simply recognizing that
information flow among humans is an essential part of making a spacecraft work is an
important first step. Too often architectures are designed and block diagrams are drawn
without taking this into account. The result is endless series of meetings, memoranda,
misunderstandings, and missed deadlines.

11. 3. 2 Modularity

A spacecraft software architecture should support modularity and reusability.  Ideally, the
architecture should support full plug-and-play capability, where every piece of hardware is
delivered as a package with all the software needed to run it.  To caricature the vision
somewhat, every piece of hardware comes with a floppy disk.  You collect all the software
on the disks, throw them into a magic black box, and out comes a complete set of
spacecraft software ready to run.  This scenario raises three questions: 1) what needs to be
on the floppy disk in order to make this work, 2) what is inside the "black box" and 3)
what price are we willing to pay in terms of up-front effort, increased risk, and reduced
efficiency in order to realize this vision?
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To answer these questions, consider the following scenario.  We have a spacecraft that
includes a camera.  This camera has two connections to the rest of the spacecraft, a 1553
bus client and a power connection.  The 1553 port is connected to a non-redundant 1553
bus, and the power terminal is connected to a non-redundant power distribution unit, which
is also connected to the 1553 bus.  There is also a CPU and a 1553 bus controller in a VME
cage.  Each of these components comes with its own plug-and-play floppy disk.

Now consider the process of turning on the camera purely from the point of view of the
hardware.  The CPU sends a command over the VME bus to the 1554 bus controller,
which sends a command to the PDU, which changes the state of a switch, which causes
electrical power to be supplied to the camera.

There are two important points to note about this scenario.  First, the camera (hardware)
does not participate at all in this process.  Turning on the camera is a side-effect of a state-
change in the PDU, which is a side-effect of a command sent over the 1553 bus, which is a
side-effect of a command sent over the VME bus, which is a side-effect of a computation
performed on the CPU.  Thus, if we suppose that the camera's floppy disk contains
executable code we are forced to conclude that this code alone is not enough to turn the
camera on.  Either the camera code has to interact with code elsewhere in the system, or
there must be something else on the disk.

Let us examine the first possibility, that the disk contains a "camera software object" that
negotiates with other software objects in the system to turn on the physical camera.  This
collaborate-object model is very popular, but not often fleshed out beyond a vague block
diagram whose link semantics are not well defined.  In the absence of a concrete proposal
from its advocates, I will set up a straw man for what such a negotiation might look like:

1) Mission manager to camera: turn yourself on
2) Camera to power manager: what is my power port connected to?
3) Power manager to camera: PDU1, port A
4) Camera to PDU1: Please turn on the power at port A
5) PDU1 to data bus manager: which bus controller is master to my 1553 bus

connection?
6) Data bus manager: 1553 bus controller 1
7) PDU1 to 1553 bus controller 1: Please send the PDU1_PORTA_ON

command
8) 1553 bus controller 1 to VME manager: what is my VME I/O address?
9) VME manager: 0x1234

[1553 bus controller object twiddles bits at 0x1234 which sets in motion the
chain of events that turns on the camera.]

There are several things to notice about this dialog.  First, it is pretty complicated.  Nine
message transactions were required.  Some of these transactions could be done once at
system initialization and cached, but in general they cannot be.  If there are redundant
PDU's, for example, then the camera has to ask which one to use every single time.

Second, this is an absolutely trivial example.  It is an open-loop change of a single binary
state with no fault management, no redundancy, no conflict detection or resolution, no
constraint checking or recovery.
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Third, there is this hypothetical "power manager" object that  is not associated with any
particular piece of hardwarei.  It is thus presumably part of the "black box" infrastructure of
the plug-and-play architecture, and is designed differently from the hardware-specific
objects.  This distinction is evident on some block-diagrams of negotiating objects (e.g. by
having dramatically more lines coming out of them ) but are otherwise undistinguished.
This leads to the impression that all these objects have a homogeneous structure, which
would appear unwarranted at best, and a serious mistake at worst.

It is incumbent upon advocates of the negotiating-object model of modularity to provide
detailed descriptions of exactly how the negotiations happen.  What are the data structures
that are passed around?  How are failures handled?  How are decisions modulated by the
global mission state?  What is the API (abstract programmer interface)?

This brings us to the second possibility, that there is something on the camera floppy disk
besides executable code.  One possibility is that the floppy disk includes object models that
are interpreted by a run-time engine (or set of engines) such as the New Millennium
Remote Agent, or similar system.  This approach has the advantage of having been
implemented and demonstrated already, and so there is a very detailed (and long) story that
can be told about exactly how this option works.  This story is beyond the scope of this
document, and there is no doubt room for improvement.  For example, the current Remote
Agent design uses three different and redundant representations.  A unified representation
would be very useful.

Finally, we observe that the fundamental problem in designing a plug-and-play architecture
for spacecraft is the many different ways in which spacecraft subsystems can interact.  The
list of interaction mechanisms found elsewhere in this document may be a useful starting
point for the design of a unified representation for hardware objects.  For example, the
camera floppy disk might contain information such as the following:

• I am a camera, which is a powered-bus-device
• When my power-state  state vector component has the value on  I draw seven watts

of power.
• My bus-interface  is of type 1553-bus-client
• I have an additional state-vector element called picture-state  which can take on the

values off, warming-up, ready, and taking-picture.
• Whenever my power-state is off, my picture-state is also off.
• When my power-state transitions to on, my picture-state becomes warming-up for

five minutes, and then becomes ready.
• When my picture-state is ready I can respond to the following additional method:

take-picture, which has the following effects...

This object model can be considered a "program" for a "black box" similar to the remote
agent that has planning, execution, and fault detection and recovery capabilities built in as
infrastructure.

                                                
iThis is because it must be able to inform any piece of hardware of its power port c
the design of the power distribution system.  In fact, the straw man example makes  
assumption that all power ports are connected to one or more PDU's with designate d
switched.  To really get this right would make the example even more complex than 
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11.4 Uplink System Design / Command & Control
Capabilities

3.1 New Command & Control Process

Rather than the traditional single-mission design approach, the X2000 software
architecture, uplink process, and command & control capabilities are intended to support a
series of missions characterized by development and launches spread out over many years,
long mission flight times, a variety of different science payloads, and at least a decade's
worth of evolving advanced hardware and software technology.

The X2000 software design approach taken to accommodate multiple missions and
evolving technology is to assume a spacecraft avionics design and shared ground data
system common to all missions. Furthermore, flight operations and other post-launch cost
considerations have led toward the design goal of developing a new command & control
process that is compatible with very low ops team staffing levels.

This new process places less emphasis (and manpower) associated with development on
the ground of a constraint-checked, conflict free, predictive-model based, timed sequence.
Rather, the X2000 uplink process design goal is for a process that allows an on-board
"stack" of multiple, time-windowed, prioritized command macros that may be time or event
triggered. This approach not only saves the enormous costs of detailed sequence planning
and the development and running of highly accurate predictive performance models, it
enables command and control of on-board processes that are inherently unpredictable, such
as anomaly response (fault protection), variable rate data compression, science opportunity
detection, and even intelligent agent command generation. S/C performance efficiencies
will result from triggering commands using on-board actuals, rather than ground model
predicts.

An important feature of the new uplink process is that it can be operated in a lower
efficiency mode by defaulting back to the old ground performance- model based, timed
command sequence mode. This mode on X2000, however, will depend on much coarser
(e.g., lower cost) performance and resource management models than have traditionally
been developed and maintained by flight projects like Galileo and Cassini.

A second important feature of the new uplink process is that it provides on-board constraint
checking that is a migrated version of similar ground based constraint checks. This permits
the same conflict identification process of macro calls to be run first on the ground using
coarse model based constraint checks, and later, on the s/c using s/c actuals. Runs on the
s/c will allow new, event driven on-board command macro calls to originate and be entered
into the command macro stack.

The third major feature of the new uplink process is a simple priority based conflict
resolution process, that resolves conflicts between macros by scheduling the macro with
the highest priority. This capability when used operationally by undersubscribing high
priority macros and oversubscribing lower priority macros, is expected to provide
"guaranteed" events together with a highly efficient supplement of "bonus" events.
Undersubscription margins will allow for late entry of on-board event driven macro calls,
some of which may be high priority, and some of which will be lower priority. Likewise,
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late, on-board intelligent agent or "smart" planner originated macro calls may be pre-
assigned high or low priorities based on mission experience, "trust", and confidence in that
agent.
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Figure 3.1 is a block diagram of a flight and ground command architecture that enjoys the
features mentioned above. User generated command macro calls can be input to the system,
run through the ground conflict id and resolution process and get uplinked as an integrated
set of macro calls, or the ground process can be bypassed and macro calls can be uplinked
directly to the on board macro "stack". The on-board conflict id and resolution process
accepts inputs from the macro stack as well as inputs from the "boxes" above, including
selected on-board closed loop processes, uplinked "real-time" immediate action commands,
fault protection commands, and event driven science and engineering commands. All of
these command sources have pre-agreed priority assignments to enable simple priority-
based conflict resolution. Macro calls that specify large time windows will have a better
chance of getting executed than macros that must be executed at one specified time. Finally,
Figure 3.1 shows that macro calls can originate from intelligent agent software located
either on the ground or in the spacecraft.
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Figure 3.2 is a block diagram of the traditional command process architecture for
comparison with the new design. One of the obvious differences is the fact that there is no
on-board constraint checking and conflict resolution process equivalent to the ground
process. The traditional ground process places much more emphasis (and $) dealing with
flight rules and constraints, precise / detailed predictive s/c performance models, and
sequence optimization. The product uplinked is a single, timed, constraint checked, conflict
free, optimized, predictive-model based command sequence. It is incompatible with
unpredicted events (such as fault recovery commands) and typically “crashes” if an
unpredicted event occurs. For this reason it doesn’t allow event driven science and
engineering events (the box with the “X” over it). It doesn’t accommodate late command
entry from on-board intelligent agents.
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FIGURE 3.3 COMPARISON OF TRADITIONAL VS. X2000 UPLINK ACTIVITY EFFORTS

Figure 3.3 is a pie chart of how uplink resources are spent operating the traditional
sequence uplink process and how these operational resources are reduced by the new
X2000 process. The new process will offer major cost reductions associated with the
development, calibration, and repeated running of predictive performance models. For
example, instead of using a detailed performance model to predict slew time and settling
time, on-board sensor actuals will trigger the next event. Instead of a detailed, carefully
calibrated thrust-time vs. delta V model, recalibrated for changing s/c mass during the
mission as propellant mass is depleted, an accelerometer will trigger the thruster-off
command. Figure 3.3 explains for each major uplink task, how the new command &
control design will enable significant operations cost savings.

Constraint checking will be simplified first, because the X2000 s/c will be designed for
operability with minimum flight rules to constrain operations and with adequate
performance margins such that the interaction between command macros competing for
shared resources will be minimized. Second, constraint checking effort will be reduced due
to the new uplink process since this permits oversubscription and doesn’t require creation
of a conflict free sequence. Finally, constraint checking on the ground can be performed
with “looser” tolerences and less precise models, since constraint checks will be
reperformed at a later time on board the s/c using parameter actuals, rather than ground
model predicts.

Sequence optimization is eliminated in the new uplink process and replaced instead by
simpler macro prioritization.
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Late changes to an optimized, conflict free, history dependent, timed sequence are
complicated to implement. For instance, adding or removing a slew in the middle of a
sequence will cause all subsequent slew time predicts to change along with the times of
subsequent events, and the sequence will have to be redone. In the new X2000 process,
adding or removing a slew is just a matter of adding or removing a macro from the
prioritized stack.

The same process above that accommodates user initiated changes, will accommodate
changes initiated by on-board faults and failure recovery macros. Thus the new X2000
command process will continue to execute its prioritized stack of macros following fault
recovery, while in most cases, the traditional, timed, history dependent sequence will
abort, fall back to some safe state, and wait for ground reconstruction, fault modeling, and
sequence redesign, before it can resume.

Instead of reviewing a sequence about to be uploaded to verify that it is optimum and
conflict free, the new uplink process simply looks at priorities and probably margins
associated with the successive release of shared resources (e.g., 50% of predicted available
memory to priority 1 macros, 30% to priority 2, 30% to priority 3, etc.)

Performance analysis may be the one uplink task area that doesn’t go down (the pie wedge
in figure 3.3 stays big), although it substantially changes character. Instead of analyzing
sequence execution to see if s/c performance actuals met s/c performance predicts and for
data to calibrate and verify predictive models, the X2000 command process will involve
analyzing command actuals to see which commands got executed and which ones didn’t
and try to understand why and decide whether to reprioritize / resubmit “bumped”
commands.

TABLE 3. 1:  X2000 COMMAND ARCHI TECTURE: 10 MOST I MPORTANT

1. TRIGGER ENGINEERING & SCIENCE COMMAND MACROS BASED ON ON-BOARD EVENTS / SENSOR
    STATES RATHER THAN PREDICTIVE PERFORMANCE MODELS.

2. FLY ON-BOARD CONSTRAINT CHECKING AND CONFLICT RESOLUTION SW SIMILAR TO GROUND SYSTEM.

3. USE SIMPLE COMMAND PRIORITY SCHEME FOR CONFLICT RESOLUTION.

4. UNDERSUBSCRIBE HIGH PRIORITY COMMANDS (GUARENTEED) AND OVERSUBSCRIBE
LOWER    PRIORITY COMMANDS (BONUS).

5. DESIGN S/C FOR OPERABILITY WITH MINIMUM NUMBER OF FLIGHT RULES & CONSTRAINTS.

6. ACCOMODATE FAULTS AND UNPREDICTABLE EVENTS WITHOUT LOSING “SEQUENCE” (MACRO STACK).

7. PROVIDE A DUAL FLIGHT-GROUND COMMAND PROCESS ARCHITECTURE SO FUNCTIONS
CAN    MIGRATE EASILY.

8. PROVIDE FOR LESS EFFICIENT, GROUND BASED, CONFLICT FREE, TIMED SEQUENCE COMMAND MODE
    AS A FALLBACK CAPABILITY.

9. EXPLOIT BOTH GROUND AND FLIGHT INTELLIGENT AGENTS AS SOURCE OF PRIORITIZED
    COMMAND MACROS.

10. MINIMIZE REQUIREMENTS FOR COORDINATED FLIGHT & GROUND EVENTS (BECAUSE MANY S/C ACTIONS
      WILL BE UNPREDICTED).
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A summary of the principles of the new X2000 command and control process described
above is provided in Table 3.1. This lists the top 10 steps to be taken to move from the
traditional ground sequencing process to the new X2000 command and control design.
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11.5 Information Systems Architecture

“A Database is a treaty that governs the behavior of Users”

Dr. Paul Gorham

University of S. Wales

1.0 Introduction

This section of the X2000 Unified Flight Ground Architecture Document address the
Information System Architecture, specifically as it relates to X2000 databases.  The X2000
database presents new opportunities and challenges for information capture and retrieval.
The ultimate goal of this architecture is to reduce the cost of:

• applications development
• ad-hoc query processing & data retrieval
• pre-planned (server push) data transfers
• replication of distributed data
• roll-up of distributed information necessary for centralized decision making.

The two fundamental systems architectural principles will assume a centralized information
base that is distributed and object-oriented in structure.  Where applicable, industry
standards will be used as a basis for some decisions with respect to implementation.

2.0  Information Architecture

Timely, correct, and properly formatted information is necessary for timely decisions at all
phases of the mission life cycle.  This architecture will attempt to cover the mission life
cycle as well as provide data to subsequent X2000 engineering efforts.  
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Figure 1 - High Level Information Architecture

Figure 1 illustrates the highest level of X2000 information architecture.  Information is
decomposed into 4 areas that reflect overall mission or project state.  Applicable data is
replicated from the centralized repository to remote sites via database replication operations.  

Project Design information is very high level information about the actual Ice & Fire
mission and vehicle configuration in question.  This structure is maintained in a Parameters
Database that will be provided by the DNP organizationii.

X2000 Bus Engineering Data contains data relevant to the generic X2000 hardware
configuration and performance. The ultimate goal of this information is to provide input for
X2000 Bus process improvement and provide planning data for subsequent X2000
missions.  

The Mission Planning structure will be a repository for sub-system engineers to populate
data structures with relevant configuration and calibration information about their respective
sub-systems’ sensors and effectors.  

The Operational Data repository will contain data that will support both real time, non-real
time, and science payload operations of the X2000 mission.  It will also contain a replicated
image of the spacecraft flight database.

Project cost reductions will be achieved by centralizing all X2000/Ice & Fire databases.
The cost savings will be made by centralized Database Administration staff and functions
(e.g. Security, Configuration Management, back-up, Recovery, and maintenance activities)
can be located in a single facility.  This will eliminate redundant database administration
activities at distributed sites.  X2000 will take maximum advantage of  distributed database

                                                
i i  The current DNP Parameters Database (PDB) is a relational structure which provid e
design tools in different phases of design.  This database supports data archiving
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operations.  Specifically, the centrally maintained X2000 data will be replicated to remote
sites and remote data products originating from remote sites will be rolled up into the
central X2000/Ice & Fire database.

2.0.1  Mission Planning and Engineering Base

This information structure will be defined by the RDL syntax.  RDL is an emerging
industry standard syntax used for the definition of the Project Command and Telemetry
Database.  The basic idea for X2000 will be the specification derives both information and
classes to manipulate the mission information.  The RDL syntax can support both
TeleCommand and Telemetry specifications set forth by the Consultative Committee Space
Data Systems (CCSDS).  The following is an example of RDL syntax to describe the
CCSDS Header of a Telemetry Packet:

PACKET P002 APID=02, DESC="Pri S/C Processor Fast Normal Mode Packet",  STALE=148
         RECORD CCSDS_Header APPEND,DESC="CCSDS Header"
            UNION HDR1      DESC="CCSDS Header 1st 16 bits"
               ui    pvno   mask=%b1110000000000000,  lshift=-13,  desc="Packet Version Num.   
Bits  0 - 2"
               ui    pckt    mask=%b0001000000000000,  lshift=-12,  desc="Packet Type                  
Bit   3"
               ui    shdf    mask=%b0000100000000000,  lshift=-11,  desc="Secondary Header Flag
Bit   4"
               ui    id        mask=%b0000011111111111,  lshift=  0,   desc="Application ID              
Bits 5 - 15"
            END
            UNION HDR2      DESC="CCSDS Header 2nd 16 bits"
               ui    segf  mask=%b1100000000000000,  lshift=-14, desc="Segment Flags               
Bits 0 - 1"
               ui    scnt  mask=%b0011111111111111,  lshift=  0,  desc="Source Sequence Count
Bits  2 - 15"
            END
            UI       plen          desc="Packet Length"
            MET   stime        desc="Secondary Header Time (64 bits)"
          END

The above example shows the flexibility of the grammar.  It is envisioned the language
would constitute the basis of parsers that would read the Mission Planning Command &
Telemetry database and would automatically generate both real time commanding database,
telemetry database, and the classes/objects that would manipulate these information bases
respectively.  The following is a high level architecture of the Mission Planning
Information Architecture.
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The specification phase would involve the population of the Project Command & Telemetry
Database.  The human-machine interface would extend an easy to use drag-drop interface
for enumeration of spacecraft hardware actuators, sensors, derived items, etc. by
engineers, scientists,  and mission planners.  Specific information fields would be handled
by pop-up Property Pages with context sensitive help to aid the operator in creation of  a
complete specification.  The back-end of the interface will take the graphic specification of
the command or telemetry point and generate the RDL syntax necessary for population of
the database.  The database would extend interfaces for applications to query existing
specifications.  This interface would be implemented through application, World Wide Web
(WWW) applets, and ad-hoc interfaces.  

To the greatest extent possible, the systems and systems generated from specifications will
be data driven in nature.  The concept of data driven means there is some object that
contains information about how to process other objects. The algorithm/program becomes
invariant—only the data is updated.   Software maintenance becomes a database update..  

All applications that access X2000 information will be created to support the Unicode
standard and designed so application resources (Menus, Dialogs, Strings, etc.…) can be
placed in “resource-only” dynamic link libraries (DLL).  This will facilitate deployment of
the applications into the language of our International Science & Engineering Partners and
Users.  (Applications will be capable of being “hot-switched” with indigenous language
prompts, menus, and dialogs.)

The back end of the Mission Planning System shall support the automatic generation of the
real time command & telemetry databases.

2.0.2 X2000 Bus Planning, Analysis and Performance Base
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Command and
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Generator

Specifications

RDL Based
Command &
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Command
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Classes
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Figure 2- Mission Planning Information Architecture
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The X2000 Planning, Analysis and Performance information base will initially become a
repository for planned performance data for the X2000 bus.  Ultimately, this repository
will be populated with real time performance data and will maintain metrics and analysis
data on planned versus operational performance of the X2000 bus.  It is envisioned that the
data from this system will constitute the information content of the feedback loop for
mission designers of subsequent X2000 missions.  The substance of this data can include
(but is not limited to):

• X2000 system, sub-system, sensor, actuator processing abilities and limitations
• Calibration Data1 (Pre-Launch calibration planning, Post Launch updates based on

performance)
• Consumable Data (Propellants, Battery Cells, etc. ) Planned and actual data
• Engineering Data1 (raw and summarized)

It is expected that this data will be utilized for planning subsequent X2000 missions.  This
database can be thought of as a process improvement repository.  The goal of this
information is to improve the quality of future X2000 missions and reduce their cost.

2.0.3  Operational Mission Base

This aspect of the X2000 information base is intended to maintain real time operational data
for both X2000 bus systems, C&T, orbital/tracking/navigation/attitude, engineering and
science payload.  The Commanding and Telemetry databases are created from
specifications in the Mission Planning Phase.

Command
Database

Telemetry
Database

Orbital,Tracking
Navigation,
& Attitude
Database

Payload
Database

Engineering
Database

OLTP
Interface

WWW
Interface

OO Middleware
(CORBA, DCOM)

Data Access
Frameworks

Applications
Software

Flight Database
Replication

Payload Database
Replication

Figure 3 - Operational Database Architecture

The focus of this document is not to design the schema for these repositories.  The
operational data base will be contained within an OODBMS.  Access to the database will be
made through an Object Oriented middleware (CORBA or DCOM).  The actual requests
from these interfaces will be handled be Transaction Processing (TP) monitor.  This class
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of software is being used because the ultimate volume of data for 4 missions will be
sufficient to crash a system without a transaction monitor.

3.0  Flight Database

The vision for the flight database is to have an OO client/server architecture.  

Command & Control Processor Database Server Processor

Payload Processor

OO Flight
Database

High Speed Bus

Spacecraft
Data

Recorder

Figure 4 - Flight Database Configuration

All applications will retrieve & post their information to the centralized database.  For time
critical high performance applications, portions of the database could be replicated to other
processors.  The database would maintain a non-volatile copy within the Spacecraft Data
Recorder.  Applications in the flight system will access data by sending messages to the
database server.  This messaging paradigm will follow the Law of Demeter.
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11.6 Scaleable & Flexible Sequence

11. 6. 1 Introduction:

Supporting future JPL missions has become a very big challenge. These days, for instance,
the pressure’s on having a visionary use of technology, being adaptable to a range of S/C
and missions, being able to shorten the development time, and having a smaller flight
team1. Event driven sequencing, priority based sequencing, sequence over-subscription,
and on-board sequence restart after S/C fault recovery are another added challenges to be
met2. Yet, important these requirements are, they can’t cost too much. Such expanded
requirements to S/C, mission operations, and flight ground S/W development have clearly
become the central success to a JPL faster, better and cheaper mission.

These new considerations have begun to drive the TMOD MP&A’s decision about how to
meet current and future JPL missions’ objectives. The search is on for the solutions that
offer: unified flight ground S/W architecture, incremental implementations, and an end to
traditional sequence obsolescence. Scaleable and Flexible Sequencing is a
recommended sequence scheme to meet the about-mentioned needs.

1 X2000 S/W architecture programmatic requirement, presentation handout, 5/27/97,
Robert Barry

2 Ice & Fire Command Architecture: The Goal, 4/23/97, John Carraway

11. 6. 2 Incremental Implementations:

It’s pretty hard to re-engineer sequence constructs from the traditional time based
sequencing to a fully automated on-board sequencing approach. Therefore, effective re-
engineering solutions need to enable gradual, piece-meal adoption.
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11.6.3 Phase 1: Time Based Sequence (see fig. 1 time based sequence
example)
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Fig. 1 Time Based Sequence Example

fork

fork

fork

Sequence Components

Sequences:

This construct is the traditional 'sequence' (see fig. 1) used on Voyager, Galileo, MGS,
etc. A series of commands / macro commands (to initiate blocks) is uplinked to the
spacecraft at a planned window to execute over the next few days, weeks, or months. Very
long sequences are called 'background sequences', and are designed to work in concert
with other shorter 'overlay sequences' (e.g., mini-sequences).

Blocks:

Candidate activities for blocks are repetitive and might include science maintenance
activities, engineering calibrations, and/or engineering maintenance activities. Blocks can
be called from the stored sequence macro commands. Parameters may be passed with the
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call to the block for use during execution. The MGSO 'brick' concept and Spacecraft
Expanded Blocks (SEB) belong to this class of sequence construct.

Mini-sequences:

Mini-sequences are similar to ordinary sequences except that they are generally shorter.
TCMs will be implemented using the mini-sequence strategy. For example, a window will
be designed in a stored sequence that encompasses an execution period for a TCM. The
sequence will be uploaded without the TCM and begin execution. The TCM (which may
require a late parameter update) will then be designed on a separate schedule and uplinked
to execute in parallel with the stored sequence.

Cyclics:

Cyclics are used to sequence repetitive activities that are defined as a repeatable command
set once in a sequence and then executed a number of times (Voyager cyclics are the best
historical example of the construct being proposed in this document). As a result, a cyclic
can only be called while the sequence containing the cyclic definition is executing. Cyclic
parameters are the number of repetitions and the amount of time between repetitions.

Planning & Sequence Ground S/W (fig. 2 MP&A-SEQ S/W Architecture)
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Allow user to design remote sensing science observations during a flight operations: i) to
reconnoiter candidate remote sensing observations, ii) to design and refine remote sensing
observations, and iii) to update observation targeting based upon improved ephemeris
knowledge.

Science Opportunity Analysis Tool:

SOA will identify and select optimal science opportunities to support both trajectory
selection and sequence development. SOA will identify time windows during which a
given set of geometric conditions that define a science opportunity are met. SOA will
analyze a fixed time window and gives the values of geometric parameters versus time.
Finally, SOA will animate (computer graphic visual) moving representations of the target.

Mission Planning & Sequencing System

APGEN:

APGEN is a resources -based interactive activity plan generator for mission planning &
sequencing, which allows automatic scheduling and modeling of activities / resources.

SST:

SST provides a capability to create, merge, edit, print, expand and check sequence
requests. First, SST will validate sequence request parameter values with respect to its type
and ranges, as well as to the constraints governing relations between different parameters.
Second, the program will also expand the sequence requests into one or more lower levels
sequence activities, notes or commands. Finally, SST will verify sequences are consistent
with the flight and mission rules, finite S/C and ground resources,. To accomplish these
roles, SST will update and maintain models of both S/C and ground states in order to check
whether allocated constraints are violated by a candidate sequence.

STS:

SST is responsible for the translation of a Spacecraft Sequence in the form of a Spacecraft
Sequence File (SSF) into a Command Packet File (CPF) for radiation to the spacecraft. A
binary UNIX file may be formatted into a CPF for transmission to the spacecraft. The
primary program of the STS is the Spacecraft Language Interpreter and Collector (SLINC)
which is based on the prototype program Seqtran_2000..

SEQ_Review:

SEQ_Review is similar to a text editor that lets the user open an arbitrary text file for
display. Unlike a text editor, SEQ_Review can be told to detect certain types of file
formats. When it finds that a file conforms to a format it "knows", SEQ_Review analyzes
the file in considerable detail. This allows the user to modify the appearance of the file (e.
g., remove unwanted information, re-format data into columns, add derived quantities
computed from data in the file) much more easily than with a text editor. SEQ_Review
learns about file formats through ASCII files called "Format Descriptors" (FD). These files
can be edited and modified by users and adapters, providing SEQ_Review with great
flexibility.
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11. 6. 4 Phase 2: Close Loop Conditional Sequence (see fig. 3 time based
conditional sequence example)
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Fig. 3 Close Loop Conditional Sequence Example
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This addition layer allows the traditional Time Based Sequence to perform closed loop
Sequence. A series of commands / macro commands (to initiate sequence blocks or event
blocks) is uplinked to the spacecraft at a planned window to execute over the next few
days, weeks, or months. An event block will be initiate at an absolute time, but the
commands will be executed depends upon the conditions of a selected set S/C state(s). The
conditions of the states are the actual S/C states during sequence execution time, and it does
not require any ground interactions.

Planning & Sequence Ground S/W

In addition to the MP&A-SEQ S/W (see fig. 2) from phase 1, an external file is needed to
set the S/C states conditions.
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11.6.5 Phase 3: Event Driven Sequence (see fig. 4 event driven sequence
example)

Sequence
Planning &
Modeling

Sequence
Execution

Event Driven
Sequence
Scheduler

Flight /Ground Flight / Ground Flight

Events Events

Event-
Driven 
Block

Event-
Driven 
Block

Absolute 
Time 
Sequence

•Check resource 
allocations

•Resolve time 
conflicts

•Constraint 
check in terms 
of activities / 
commands

•Check priority

Fig. 4 Event Driven Sequence

The unified flight ground S/W architecture plays an important role in this particular phase,
Sequence planning & modeling S/W and Event driven sequence scheduler will be the
identical S/W used both on the ground and on-board the S/C.

Both the absolute time sequence and event driven sequences / blocks are developed on the
ground by the sequence planning & modeling, and event driven scheduler tools. The
sequence planning & modeling S/W will schedule the absolute time sequence w.r.t. the
sequence activities’ priority, and constraint check both the absolute time and event driven
sequence. The event driven scheduler will model the S/C states for the event driven
sequences / blocks. After the sequences’ uplink, the absolute sequence will be executed as
time expired, whereas the event driven blocks are triggered by the elected S/C states via the
on-board event driven scheduler. Prior to the execution of the event driven blocks, the on-
board sequence planning & modeling S/W will check the S/C resource allocations, check
priority, resolve any time conflicts with the overall sequence, and perform sequence
constraint checking.
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11.7 Development Environment

1.0  Introduction

This section of the software architecture document addresses the configuration, facilities,
and tools necessary for development of the X2000 Unified Flight Ground software
systems.  The highest level guiding paradigms are:

1.  Create a repeatable process
2.  Approach the design & development process with a “tool based” approach
3.  Increase programmer productivity

2.4  Design

The creation of the X2000 design will be with the Unified Modeling Technique. The choice
of what model projections' one creates has a profound influence upon how a problem is
approached and how a solution is shaped. Abstraction, the focus on relevant details while
ignoring others, is a key to learning and communicating. Because of this:

• Every complex system is best approached through a small set of nearly independent
views of a model; no single view is sufficient.

• Every model can be expressed at different levels of fidelity.
• The best models are connected to reality.

In terms of the views of a model, the UML defines the following graphical diagrams:

• Use case diagram
• Class diagram
• Behavior diagrams
• State diagram
• Activity diagram
• Sequence diagram
• Collaboration diagram
• Implementation diagrams
• Component diagram
• Deployment diagram

These diagrams provide multiple perspectives of the system under analysis or development.
The underlying model integrates these perspectives so that a self-consistent system can be
analyzed and built. These diagrams, along with supporting documentation, are the primary
artifacts that a modeler sees, although the UML and supporting tools will provide for a
number of derivative views.

2.0.1 Notation and Semantics History
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The UML is an evolution from Booch, OMT, OOSE, most other object-oriented methods,
and many other sources. These various sources incorporated many different elements from
many authors, including non-OO influences. The UML notation is a melding of graphical
syntax from various sources, with a number of symbols removed (because they were
confusing, superfluous, or little-used) and with a few new symbols added. The ideas in the
UML come from the community of ideas developed by many different people in the object-
oriented field. The UML developers did not invent most of these ideas; their role was to
select and integrate ideas from the best OO and computer-science practices. The genealogy
of the notation and underlying detailed semantics is complicated, so it is discussed here
only to provide context, not to represent precise history.

Use-case diagrams are similar in appearance to those in OOSE.

Class diagrams are a melding of OMT, Booch, class diagrams of most other OO methods.
Process-specific extensions (e.g., stereotypes and their corresponding icons) can be
defined for various diagrams to support other modeling styles.

Statechart diagrams are substantially based on the statecharts of David Harel with minor
modifications. The Activity diagram, which shares much of the same underlying semantics,
is similar to the work flow diagrams developed by many sources including many pre-OO
sources.

Sequence diagrams were found in a variety of OO methods under a variety of names
(interaction, message trace, and event trace) and date to pre-OO days. Collaboration
diagrams were adapted from Booch (object diagram), Fusion (object interaction graph),
and a number of other sources.

Collaborations are now first-class modeling entities, and often form the basis of patterns.

The implementation diagrams (component and deployment diagrams) are derived from
Booch's module and process diagrams, but they are now component-centered, rather than
module-centered and are far better interconnected.

Stereotypes are one of the extension mechanisms and extend the semantics of the meta-
model. User-defined icons can be associated with given stereotypes for tailoring the UML
to specific processes.

The scope of the UML tools will cover the design needs of X2000 software designers.
There are several Computer Aided Software Engineering (CASE) tools and companies that
provide consultations services for UMT that would support a quick start for the creation of
the X2000 software design.

3.0  X2000 Design, Development, and Operational Resources

The design and development platform will be PC based.  Initially, the Windows NT
operating systems will be used by all software designers and developers.  It will also be the
target operational platform for the X2000 ground data system.  The performance/cost index
between PC’s and UNIX workstations is significant.  PC performance is roughly
equivalent to UNIX workstations.  However, the purchase price of PC’s is significantly
less than UNIX workstations and should constitute a significant saving in both hardware
and system software procurements for X2000.  The Windows NT operating system
installation base now exceeds UNIX.  Windows NT has matured and constitutes a solid
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development and operational platform.  Current NT architecture features and future plans
constitute significant flexibility for X2000 hardware configurations.

The embedded flight system development will be hosted on PC’s and will cross-compile to
the Power PC Architecture( or whatever target is decided upon by the X2000 Hardware
Architecture Committee).  Flight system developers will use some incarnation  of the VX
Works real time operating system (RTOS) developed by Wind River Systems.  This RTOS
supports the requirements for single and distributed flight software configurations.

3.0.1  Languages

The X2000 language philosophy will be the “right tool for the job.”  However, some high-
level guidelines will be applied to language selection for ground data system development:

• It should be capable of persistence operations with an OODBMS
• It should have bindings to an interface or object definition language (IDL or ODL)

Flight system development, language selection should be predicated upon:

• Availability of supporting “run-time” system
• Ability to process real-time deadlines
• Ability to interface with languages capable of supporting real-time events if it is not
• capable on it’s own (e.g. C++/Assembly Language)
• Supported language of VxWorks RTOS
• Preferably, Object Oriented in Nature.

3.0.3  Databases

X2000 will make exclusive use of Object Database Technology.  The whole system design,
development,

and test strategies are Object Oriented in nature.  Therefore it logically follows that the
persistence mechanism should be predicated upon the aforementioned.  Using tables to
store objects is like driving your car home then disassembling it to put it into the garage.  It
can be assembled again in the morning, but one eventually asks whether this is the most
effective way to park a car.

3.0.4  Frameworks

To achieve rapid development and aggressive delivery schedules for X2000 systems, the
prevailing paradigm in this aspect of system development is, the cheapest line of code is the
line of code you don’t have to write.  Frameworks within X2000 will be classified into two
areas:

• Desktop
• Middleware

The elements of a desktop framework are as illustrated:
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Figure 5 - Desktop Framework Mind-Mapping Diagram

Desktop frameworks should both  increase X2000 programmer productivity and change the
way X2000 visual applications are developed.  The result is a superior end-user application
interface at a lower cost.

The elements of a middleware framework are as illustrated:
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Figure 6 - Middleware Framework Mind-Mapping Diagram

Frameworks will improve the ability of X2000 developers to deal with the complexity of
distributed development.  They will help coordinate middleware elements that run on
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distributed heterogeneous platforms.  Frameworks will create an infrastructure of
communicating system objects. Where each system object is defined by using an Object
Request Broker’s (ORB) IDL.  Each system will be self describing.  The best part is,  the
components are certified to work together.  X2000 developers simply provide the code that
customizes the system at a very fine grained level.

4.0  Integrated Development Environments

X2000 developers will achieve significantly more productivity by using Integrated
Development environments.  The environment for X2000 support must have:

1.  Incremental Compilation and Linkage
2.  Source Level Debugging
3.  Help
4.  Developer Support Tools
5.  Make Capability
6.  Syntax coloring
7.  Support different editors (VI, EMACS, Brief, etc..)
8.  Support 3rd party tool “plug-ins”
9.  Support Code Browsing
10.   Integrated configuration management
11.   Integrated WWW access
12.   Resource Editors (for creation of icons, bitmaps, etc.)

The key idea is to have a single tool for developer’s to learn.  Third party tools must be able
to operate in this environment.  Productivity will be maximized keeping developers within
their tool focused on quality code production.
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11.8 Java and Java Beans: A Component Architecture for
Java at JPL

Abstract

Over the past few years, constructing applications by assembling re-usable software
components has emerged as highly productive and widely accepted way to develop custom
applications. First generation products such as Microsoft's Visual Basic, with its VBX
components and "forms-based" application assembly process proved to be very useful in
building a broad spectrum of applications. Visual Basic has since been followed by other
products such as Borland's Delphi which further enhanced the basic component assembly
application development model by adding more powerful data access components

and object-oriented component extension capabilities.  Now, JPL developers building an
institutional software infrastructure for the Outer Planets project can leverage the most
modern and adaptable software development tool ever created for a component based flight
and ground system software architecture.  It can not be stressed enough that the
components that are being developed, extended, and reused are in a binary incarnation.

Java and Java Beans take the component software assembly paradigm to a new level.
Java Beans is an architecture and platform neutral API for creating and using dynamic Java
components. Java Beans build on the strengths of the component assembly
development model established by these pioneering products, and extends the power
further. Application developers will be able to use a variety of development tools to
assemble custom applications from fully portable Java Beans. This document is a brief
overview of Java and Java Beans and its functional capabilities. It discusses:

• How Java Beans extend and enhance the capabilities of the portable Java Platform
• The key elements that make up a software component model
• Highlights of Java Bean functional capabilities
• How Java Beans Extend the Java Platform

Building on Java Strengths

Java has quickly established itself as the industry standard platform for building fully
portable Internet and Corporate Intranet applets and applications. The Java platform
provides a number of advantages to developers for these types of applications:

• Fully portable platform : language, libraries and virtual machine pervasive
presence of the Java platform in Browsers, and soon within Operating
Systems (soon means in terms of embedded OS, Wind River should have a Java
port FY96Q4 for VXWorks) themselves, allows developers to write application
functionality once and deploy the application broadly on a wide variety of OS and
hardware platforms.

• Powerful and compact environment: The Java platform provides developers
with the full power of an object-oriented language while eliminating the complexity,
housekeeping and heavier weight object creation and registration processes required
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by other language and programming model environments. The lightweight
runtime can be incorporated in chips for embedded systems, in PDAs
as well as client and server class PC's and workstations where Java
is becoming increasingly pervasive.

• Network aware: From its inception, the Java platform has been network aware.
TCP/IP support is built in. Security mechanisms which allow full protection
from applet interference with client-side data are built-in. Finally, the platform was
designed to allow applets and applications to be built from self-describing classes
which can be easily downloaded to the client-environment without the need for
heavy weight installation or registration processes.  Java Beans build on all of these
strengths and extends the Java platform further.

Component Model Overview

Before describing the services provided by the Java Beans API, it is useful to have a high
level understanding of the key elements and services provided by component models in
general.

Component Model Elements

A component model is an architecture and set of APIs that allow developers to define
software components that can be dynamically combined together to create an application. A
component model consists of two major elements: components and containers.

Components can range in size and capability from small GUI widgets like a button, to
applet size functionality such as a tabular viewer to a more full sized application such as an
HTML browser of a text layout application. Components can have a visual appearance
such as a button, or can be non-visual, such as a telemetry data feed monitoring
component.

Containers are used to hold an assembly or related components. Containers provide the
context for components to be arranged and interact with one another. Containers are
sometimes referred to as forms, pages, frames or shells. Containers can also be
components, i.e. a container can be used as a component inside another container.

Component Model Services

A component typically provides five major types of services:

•      Component Interface Publishing and Discovery
•      Event Handling
•      Persistence
•      Layout
•      Application Builder Support

These are described in greater detail below.

Runtime Component Interface Publishing and Discovery
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This is the mechanism for components to "publish" or "register" their interfaces so that they
can be "driven" dynamically by calls and event notifications from other components or
application s. In ground station example, this publishing and discovery mechanism is what
allows the telemetry point component to ask the strip charting component to draw a graph
of its data. Since the strip charting component has "registered" its interfaces to the
component environment, the strip charting component does not need to be of the same
application "build" as the telemetry point component. Instead, even though they were built

separately, they can interact in a dynamic way using the services provided by the
component environment.

Event Handling

Event Handling is the mechanism for components to "raise" or "broadcast" events and have
those events delivered to the appropriate component (s) that need or want to be notified.
Notified components in turn typically perform some function. For example, if the
developer of the control center application provided a button for the user to select between a
CVT chart or a line graph, the event handling systems would notify the charting component
when the user clicked on the button component.

In addition to system events such as clicking the mouse, components can define their own
events. For example, a component that monitors a live data feed such as telemetry
information or the power status of a antenna or a change in the data rate of the FEP. The
"data changed" event could be handled by a variety of other components to sound an alarm,
change a visual display or start another process.

Persistence

Persistence is the mechanism for storing the state of components in a non-volatile place.
Component state is stored in the context of the container and in relationship to other
components. For example, if the Principle Investigator wanted to save the on-line science
web page with their telemetry health information and chosen charts, the persistence
mechanism would support this.

Layout

There are two major types of layout control which component models support. First, they
provide a way for a particular component to control its visual appearance within its own
space. Second, component models provide mechanisms and services for a component's
layout in relation to other components inside a container. This includes services for
handling appropriate behavior when the component is activated. For some types of
components this may include such things as menu bar merging.

For the great majority of applications, layout requirements for components in the context of
a container are straight forward. Most component layout requirements are satisfied by
giving each component a non-overlapping rectangular space. Developers control the lay out
the components (buttons, viewers etc.) in a logical, easy to use manner that supports the
application's functionality. End users do not rearrange the components at runtime.

Application Builder Support



X2000 Software Architecture Definition 5/12/97

127

Application Builder Support interfaces enable components to expose their properties and
behaviors to Application Builder Development tools. Using these interfaces, tools can
determine the properties and behaviors (events and methods) of arbitrary components. The
tools can the provide mechanisms such as tool palettes, inspectors, editors which the
application developer uses to work with the various components to assemble an
application. Through these mechanisms the application developer can modify the state and
appearance of components application developer can modify the state and appearance of
components as well as establish relationship between components.

For example, let's look at the button and charting components from our on-line banking
example. Recall that when the end-user presses the button the chart switches from a bar
chart to a line graph. When assembling this application, the application developer uses
property editors to specify the appearance (size, color, label) of the button and the default
type of chart (bar chart) to display. The developer uses other application development tool
mechanisms to specify the relationship between the button's "click" event and the chart
component's "chart type" property.

Distributed Computing

In addition to these five major services, component models often provide a strategy for
using the components in a distributed computing environment. For example, a
component that monitors the status of an encounter sequence may run on a server attached
to that machine. If a data value changes, the server component may raise an event which
gets delivered over the network to another software component running on a PI’s desktop
machine. The desktop component could then respond appropriately, perhaps posting a
message, or changing the shape of a graph.

Clearly, there is a big difference between software components interacting on a single
computer and components interacting over a network. Besides needing to take into
consideration the slower speeds of a network, the developer and distributed computing
infrastructure also need to provide appropriate recovery and re-synchronization
mechanisms should either component or machine fail in some fashion.

Attempting to simply extend a single machine desktop component model to encompass all
the requirements demanded by complex heterogeneous networked computing environments
is fraught with problems and trade-offs. The desktop component model will either become
burdened with more complex APIs and heavier weight execution environments, or the
distributed computing capabilities will be less than robust.

Consequently, component models that are serious about providing full distributed
computing capabilities will leverage robust established distributed computing technologies
such as CORBA. This way the single machine component model can be kept compact and
light weight, while also providing access to rich functionality that may be required by
distributed applications.

The next section of this document discusses Java Beans in the context of the elements and
services that comprise a software component model.

Java Beans API Highlights
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Java Beans is an architecture and platform neutral API for building and using dynamic Java
component and container functions, and provides assess to the five major component
model services outlined above, namely:

• Component Interface Publishing and Discovery
• Event Handling
• Persistence
• Layout
• Application Builder Support

Java Beans component model services can be implemented by bridging to specific
component models, including Microsoft's OLE/COM, CI Lab's OpenDoc, Netscape's Live
Connect. In addition Java Beans will run on JavaSoft's embeddable JavaOS.
Libraries bridge the Java Bean API to the various component model
implementations.

Thus, a developer can build components completely in Java using fully portable Java Beans
APIs. Developers will not have to intersperse non-portable platform or component model
specific calls in their portable Java code. The Java platform (which will include the Java
Beans APIs) allows component developers to write both the functional capabilities and
component behavior aspects of a component completely in Java.

Java Beans components raise the Java notion of "write once, use anywhere" to a
new level. Java Beans integrate in a high quality way into a variety of containers, including
Netscape (using Javascript and LiveConnect), in HotJava and other Java containers, and
Microsoft containers (such as Explorer, Visual Basic, Windows Shell, and Word),
OpenDoc containers, and OLE containers such as PowerBuilder, Delphi and other visual
builder tools that support OLE/COM.

Java Beans services will be part of the Java platform. This means that developers will not
need to distribute any extra libraries in order for applets and applications
built using Java Beans to work . In addition, Java Beans will be able to be used
outside of containers as independent Java applets which can communicate dynamically.

The Java Beans platform and architecture neutral API in combination with
the fact that a Java component's full functional implementation is also fully
portable make Java Beans highly re-useable. Unlike with other component
models, Java Beans are not bound to a particular platform or container or component
model. Consequently, JPL developers of Java Beans will be able to target all future
missions.

Consumers of components (e.g JPL Flight and Ground Systems Developers) will get the
highest leverage from the purchase and time spent learning to use a Java Bean component.
They will be able to re-use Java Beans in a wide variety of Internet, Intranet and even
proprietary client/server applications.

The following section provides some insight into the design goals and characteristics
developers can expect to see in the Java Beans API.

Design Goals
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The major design goals of the Java Beans API and implementation approach are:

Java Beans is compact and easy to create and use. Java Beans can be very compact and
simple to create. In particular the simple components will be very easy. Building more
complex components in Java will be possible as well. By fully leveraging the Java
platform's functionality they can also be kept very compact.

Existing component model APIs have emerged by scaling down from complex heavy
weight application size component to include lighter weight widget size components. In
contrast, Java Beans APIs have been designed by scaling up from simpler lighter weight
widgets, applets, and applications towards more full function applications. Consequently,
the Java Beans API will not overburden the smaller widget and applet size components
with complexity and weight. Since these smaller sized components are most prevalently
used, Java Beans' compact design will be advantageous to both component builders and
component consumers.

Java Beans is fully portable.

Java Beans are fully portable through the platform neutral Java Beans API and bridging
libraries that will be part of the standard Java platform. As a result, developers will not
need to include non-portable code or be concerned with including platform-specific libraries
with their Java applets.

Java Beans leverage many of the inherent strengths of the Java Platform. Java Beans takes
advantage of the existing class discovery mechanism already built into the Java platform.
This mechanism uses Java's unique introspection and reflection technology. This means
that Java does not need to introduce additional, heavier

weight registration mechanisms to the runtime to support interface publishing and
discovery.

In addition, consistent with Java's overall design center of using light weight and easily
understandable mechanisms, many Java Beans will not require any additional programming
by the developer. For example, Abstract Window Technology (AWT) components will be
Java Beans automatically.

The Java Beans libraries will also provide default component behaviors for simple
components. For example, automatic persistence will be handled using Java serialization.
In addition Java Beans will provide automatic generation of property editors by examining
a component's get and set methods. Of course, component developers will be able to
override the default behavior as may be required by more complex components or a desire
to provide richer component editors. Finally, Java Beans components will also benefit from
the new AWT desktop integration capabilities such as cut-copy-paste and drag-and-drop
interfaces.

Java Beans leverages robust distributed computing mechanisms.  Java Beans component
model APIs and implementation are focused on components interacting in a single virtual
machine. Rather than over complicating the Java Beans API or burdening the Java platform
with heavier weight distributed computing

mechanisms, Java developers will be able to chose among several distributed computing
approaches. For example, developers will be able to add distributed component interaction
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to their Java applications by using Java's Remote Method Invocation, by using industry
standard CORBA IDL interfaces for remote object access, or by other distributed
computing mechanisms. Developers will be able to chose the mechanism that best suits
their portability, performance and legacy integration requirements.

Flexible build-time component editors.

Java Beans will allow component developers to specify a broader variety of build-time
property sheets, inspectors and editors for their components. This will allow developers to
provide the most productive way for component users to reap the full value form
component capabilities. For example, a data base connection component provider might
want to provide more than a long, complicated property sheet for the developer to use at
build time. Instead the component provider might want to organize the various properties in
tabbed sections or perhaps allow the component user to visually specify table joins at build
time. The Java Beans Application Builder Tool APIs will support a way for component
developers to create the best type of property editor for their component type.

Conclusion

Java Beans further enhance the portable Java platform by adding new levels of dynamism,
flexibility and re-use. Java Beans take the component assembly model o f
application development to a new level. Java Beans are compact, easy to build,
fully portable, and re-useable in the broadest number of containers and environments.  Java
and Java Beans will enable JPL developers powerful and exciting new types of embedded
applications for space missions, “mission oriented” Intranet applications and Internet inter-
activity for the science and academic communities.
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11.9 JTAG testability

Flight Hardware Test/BIST

 JTAG IEEE 1149.1 Standard

With increased silicon complexity and shrinking IC packaging geometry, board
interconnect validation has become difficult and expensive using conventional PCB and
MCM testing. The IEEE 1149.1 standard's primary objective is to enable system users to
control and observe a device's input and output pins for the purpose of interconnect testing.
This protocol also ensures interoperability between components in a system.

The implementation of a JTAG testability architecture in a flight system would not only
allow circuit and interface verification at the IC, MCM, and PCB levels, but also the
Systems level, while always allowing for future expansion. It could also be used for high
resolution onboard flight heath diagnosis/determination, or even function as an additional
Systems level data bus should it ever became necessary.


